Sliver Nanoparticles: A Promising Strategy in Preventive Dentistry

Authors

    Alireza Asadi Dental school, Shiraz University of Medical Sciences, Shiraz, Iran
    Melika Rezaee Faculty of Materials Engineering, Islamic Azad University, Najafabad, Isfahan, Iran
    Yasamin Ghahramani * Oral and Dental Disease Research Center, Department of Endodontics, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran ghahramany@sums.ac.ir
https://doi.org/10.61838/kman.jodhn.2.2.4

Keywords:

Silver nanoparticles (AgNPs), Dental biofilm inhibition, Antimicrobial properties, Oral health, nanomaterials

Abstract

Dental biofilms are an important factor in the etiology of oral diseases, such as caries and periodontitis, and have posed a serious challenge to standard antimicrobial therapies. A good alternative is the use of silver nanoparticles (AgNPs), which have strong antibacterial properties, a broad-spectrum range of activity, and good penetration through biofilms. The present review discusses the mechanism of AgNPs in the disruption of biofilm development by means of damage to bacterial cell walls, metabolic interference, and ROS generation. The effect of AgNPs is much better than that of regular antimicrobial agents, implying a low chance of developing resistance by bacteria and therefore better oral health outcomes. Incorporated into toothpaste, mouthwash, or dental coatings, the materials could further enhance long-term protection and adhesion inhibition of biofilms. Therefore, AgNPs show promise in dentistry. However, finding materials suitable for human use will be a great challenge, long-term effects, and optimal concentrations require further investigation. This review highlights recent advancements, applications, and challenges associated with AgNPs in dental biofilm control, emphasizing their role as a promising strategy for preventing oral infections.

Downloads

Download data is not yet available.

References

1. Marsh PD, Bradshaw DJ. Dental plaque as a biofilm. Journal of industrial microbiology and biotechnology. 1995;15(3):169-75.

2. Larsen T, Fiehn NE. Dental biofilm infections–an update. Apmis. 2017;125(4):376-84.

3. Jakubovics NS, Goodman SD, Mashburn‐Warren L, Stafford GP, Cieplik F. The dental plaque biofilm matrix. Periodontology 2000. 2021;86(1):32-56.

4. Schmidt JC, Zaugg C, Weiger R, Walter C. Brushing without brushing?—a review of the efficacy of powered toothbrushes in noncontact biofilm removal. Clinical oral investigations. 2013;17:687-709.

5. Ghahramani Y, Yaghoobi F, Motamedi R, Jamshidzadeh A, Abbaszadegan A. Effect of endodontic irrigants and medicaments mixed with silver nanoparticles against biofilm formation of enterococcus faecalis. Iranian Endodontic Journal. 2018;13(4):559.

6. Moazzami F, Ghahramani Y, Tamaddon AM, Nazhavani AD, Adl A. A histological comparison of a new pulp capping material and mineral trioxide aggregate in rat molars. Iranian endodontic journal. 2013;9(1):50.

7. Eskandari F, Ghahramani Y, Abbaszadegan A, Gholami A. The antimicrobial efficacy of nanographene oxide and double antibiotic paste per se and in combination: part II. BMC Oral Health. 2023;23(1):253.

8. Ghahramani Y, Tabibi SS, Khan MMR, Asadi A, Mohammadi E, Khaksar E, et al. Recent advances in bioactive materials: Future perspectives and opportunities in oral cancer biosensing. Talanta. 2025;286:127494.

9. Adl A, Abbaszadegan A, Gholami A, Parvizi F, Ghahramani Y. Effect of a New Imidazolium-based Silver Nanoparticle Irrigant on the Bond Strength of Epoxy Resin Sealer to Root Canal Dentine. Iran Endod J. 2019;14(2):122-5. Epub 2019/04/01. doi: 10.22037/iej.v14i2.22589. PubMed PMID: 36855446; PubMed Central PMCID: PMC9968383.

10. Mallineni SK, Sakhamuri S, Kotha SL, AlAsmari ARGM, AlJefri GH, Almotawah FN, et al. Silver nanoparticles in dental applications: A descriptive review. Bioengineering. 2023;10(3):327.

11. A Asadi MR, Y Ghahramani. recent advances in bioactive materials for diagnosis and treatment of oral cancer. advances in applied nano biotechnology. 2023;4(1):21_35.

12. Sanaee MR, Danesh Manesh H, Janghorban K, Sanaee R, Kooshesh L, Ghahramani Y, et al. The influence of particle size and multi-walled carbon nanotube on physical properties of mineral trioxide aggregate. Materials Research Express. 2019;6(6):065413. doi: 10.1088/2053-1591/ab0f54.

13. Abbaszadegan A, Ghahramani Y, Farshad M, Sedigh-Shams M, Gholami A, Jamshidzadeh A. In Vitro Evaluation of Dynamic Viscosity, Surface Tension and Dentin Wettability of Silver Nanoparticles as an Irrigation Solution. Iran Endod J. 2019;14(1):23-7. Epub 2019/01/01. doi: 10.22037/iej.v14i1.21758. PubMed PMID: 36879595; PubMed Central PMCID: PMC9984811.

14. Fernandez CC, Sokolonski AR, Fonseca MS, Stanisic D, Araújo DB, Azevedo V, et al. Applications of silver nanoparticles in dentistry: advances and technological innovation. International Journal of Molecular Sciences. 2021;22(5):2485.

15. Tang S, Zheng J. Antibacterial Activity of Silver Nanoparticles: Structural Effects. Advanced Healthcare Materials. 2018;7(13):1701503. doi: https://doi.org/10.1002/adhm.201701503.

16. Ghorbanzadeh R, Pourakbari B, Bahador A. Effects of Baseplates of Orthodontic Appliances with in situ generated Silver Nanoparticles on Cariogenic Bacteria: A Randomized, Double-blind Cross-over Clinical Trial. J Contemp Dent Pract. 2015;16(4):291-8. Epub 2015/06/13. doi: 10.5005/jp-journals-10024-1678. PubMed PMID: 26067732.

17. Porter GC, Tompkins GR, Schwass DR, Li KC, Waddell JN, Meledandri CJ. Anti-biofilm activity of silver nanoparticle-containing glass ionomer cements. Dent Mater. 2020;36(8):1096-107. Epub 2020/06/09. doi: 10.1016/j.dental.2020.05.001. PubMed PMID: 32505537.

18. Cheon JY, Kim SJ, Rhee YH, Kwon OH, Park WH. Shape-dependent antimicrobial activities of silver nanoparticles. International journal of nanomedicine. 2019:2773-80.

19. Zaman Y, Ishaque MZ, Ajmal S, Shahzad M, Siddique AB, Hameed MU, et al. Tamed synthesis of AgNPs for photodegradation and anti-bacterial activity: effect of size and morphology. Inorganic Chemistry Communications. 2023;150:110523.

20. Lv H, Cui S, Yang Q, Song X, Wang D, Hu J, et al. AgNPs-incorporated nanofiber mats: Relationship between AgNPs size/content, silver release, cytotoxicity, and antibacterial activity. Materials Science and Engineering: C. 2021;118:111331.

21. Jeong Y, Lim DW, Choi J. Assessment of Size-Dependent Antimicrobial and Cytotoxic Properties of Silver Nanoparticles. Advances in Materials Science and Engineering. 2014;2014(1):763807. doi: https://doi.org/10.1155/2014/763807.

22. Dong Y, Zhu H, Shen Y, Zhang W, Zhang L. Antibacterial activity of silver nanoparticles of different particle size against Vibrio Natriegens. PloS one. 2019;14(9):e0222322.

23. Dutra-Correa M, Leite AA, de Cara SP, Diniz IM, Marques MM, Suffredini IB, et al. Antibacterial effects and cytotoxicity of an adhesive containing low concentration of silver nanoparticles. Journal of dentistry. 2018;77:66-71.

24. Elkhateeb O, Atta MB, Mahmoud E. Biosynthesis of iron oxide nanoparticles using plant extracts and evaluation of their antibacterial activity. AMB Express. 2024;14(1):92. Epub 2024/08/17. doi: 10.1186/s13568-024-01746-9. PubMed PMID: 39152277; PubMed Central PMCID: PMC11329484.

25. Gurunathan S, Han JW, Kwon DN, Kim JH. Enhanced antibacterial and anti-biofilm activities of silver nanoparticles against Gram-negative and Gram-positive bacteria. Nanoscale Res Lett. 2014;9(1):373. Epub 2014/08/20. doi: 10.1186/1556-276x-9-373. PubMed PMID: 25136281; PubMed Central PMCID: PMC4127560.

26. Skwarczynski M, Bashiri S, Yuan Y, Ziora ZM, Nabil O, Masuda K, et al. Antimicrobial Activity Enhancers: Towards Smart Delivery of Antimicrobial Agents. Antibiotics (Basel). 2022;11(3). Epub 2022/03/26. doi: 10.3390/antibiotics11030412. PubMed PMID: 35326875; PubMed Central PMCID: PMC8944422.

27. Parvekar P, Palaskar J, Metgud S, Maria R, Dutta S. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of silver nanoparticles against Staphylococcus aureus. Biomater Investig Dent. 2020;7(1):105-9. Epub 2020/09/18. doi: 10.1080/26415275.2020.1796674. PubMed PMID: 32939454; PubMed Central PMCID: PMC7470068.

28. Cavassin ED, de Figueiredo LFP, Otoch JP, Seckler MM, de Oliveira RA, Franco FF, et al. Comparison of methods to detect the in vitro activity of silver nanoparticles (AgNP) against multidrug resistant bacteria. Journal of nanobiotechnology. 2015;13:1-16.

29. Chinnathambi A, Alharbi SA, Joshi D, V S, Jhanani GK, On-Uma R, et al. Synthesis of AgNPs from leaf extract of Naringi crenulata and evaluation of its antibacterial activity against multidrug resistant bacteria. Environ Res. 2023;216(Pt 1):114455. Epub 2022/10/07. doi: 10.1016/j.envres.2022.114455. PubMed PMID: 36202242.

30. Durán N, Durán M, de Jesus MB, Seabra AB, Fávaro WJ, Nakazato G. Silver nanoparticles: A new view on mechanistic aspects on antimicrobial activity. Nanomedicine. 2016;12(3):789-99. Epub 2016/01/03. doi: 10.1016/j.nano.2015.11.016. PubMed PMID: 26724539.

31. Sharma VK, Yngard RA, Lin Y. Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interface Sci. 2009;145(1-2):83-96. Epub 2008/10/24. doi: 10.1016/j.cis.2008.09.002. PubMed PMID: 18945421.

32. Jena P, Bhattacharya M, Bhattacharjee G, Satpati B, Mukherjee P, Senapati D, et al. Bimetallic gold-silver nanoparticles mediate bacterial killing by disrupting the actin cytoskeleton MreB. Nanoscale. 2020;12(6):3731-49. Epub 2020/01/30. doi: 10.1039/c9nr10700b. PubMed PMID: 31993609.

33. Seong M, Lee DG. Silver Nanoparticles Against Salmonella enterica Serotype Typhimurium: Role of Inner Membrane Dysfunction. Curr Microbiol. 2017;74(6):661-70. Epub 2017/03/23. doi: 10.1007/s00284-017-1235-9. PubMed PMID: 28321528.

34. Ghodake G, Kim M, Sung JS, Shinde S, Yang J, Hwang K, et al. Extracellular Synthesis and Characterization of Silver Nanoparticles-Antibacterial Activity against Multidrug-Resistant Bacterial Strains. Nanomaterials (Basel). 2020;10(2). Epub 2020/02/26. doi: 10.3390/nano10020360. PubMed PMID: 32092941; PubMed Central PMCID: PMC7075330.

35. Mishra A, Pradhan D, Halder J, Biswasroy P, Rai VK, Dubey D, et al. Metal nanoparticles against multi-drug-resistance bacteria. J Inorg Biochem. 2022;237:111938. Epub 2022/09/20. doi: 10.1016/j.jinorgbio.2022.111938. PubMed PMID: 36122430.

36. Ciepluch K, Skrzyniarz K, Barrios-Gumiel A, Quintana S, Sánchez-Nieves J, de la Mata FJ, et al. Dendronized Silver Nanoparticles as Bacterial Membrane Permeabilizers and Their Interactions With P. aeruginosa Lipopolysaccharides, Lysozymes, and Phage-Derived Endolysins. Front Microbiol. 2019;10:2771. Epub 2019/12/24. doi: 10.3389/fmicb.2019.02771. PubMed PMID: 31866964; PubMed Central PMCID: PMC6908850.

37. Egorova E, Kaba S, Tlupova S. Assessment of the cytotoxicity of silver nanoparticles with different surface charge. Nanotechnology Research Journal. 2016;9(1):25-48.

38. El Badawy AM, Silva RG, Morris B, Scheckel KG, Suidan MT, Tolaymat TM. Surface charge-dependent toxicity of silver nanoparticles. Environmental science & technology. 2011;45(1):283-7.

39. Ansari MA, Khan HM, Khan AA, Ahmad MK, Mahdi AA, Pal R, et al. Interaction of silver nanoparticles with Escherichia coli and their cell envelope biomolecules. Journal of basic microbiology. 2014;54(9):905-15.

40. Carlson C, Hussain SM, Schrand AM, Braydich-Stolle LK, Hess KL, Jones RL, et al. Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B. 2008;112(43):13608-19. Epub 2008/10/04. doi: 10.1021/jp712087m. PubMed PMID: 18831567.

41. Xu H, Qu F, Xu H, Lai W, Andrew Wang Y, Aguilar ZP, et al. Role of reactive oxygen species in the antibacterial mechanism of silver nanoparticles on Escherichia coli O157: H7. Biometals. 2012;25:45-53.

42. Banerjee M, Mallick S, Paul A, Chattopadhyay A, Ghosh SS. Heightened reactive oxygen species generation in the antimicrobial activity of a three component iodinated chitosan− silver nanoparticle composite. Langmuir. 2010;26(8):5901-8.

43. Dasgupta N, Ramalingam C. Silver nanoparticle antimicrobial activity explained by membrane rupture and reactive oxygen generation. Environmental chemistry letters. 2016;14(4):477-85.

44. Flores‐López LZ, Espinoza‐Gómez H, Somanathan R. Silver nanoparticles: Electron transfer, reactive oxygen species, oxidative stress, beneficial and toxicological effects. Mini review. Journal of Applied Toxicology. 2019;39(1):16-26.

45. Quinteros MA, Cano Aristizábal V, Dalmasso PR, Paraje MG, Páez PL. Oxidative stress generation of silver nanoparticles in three bacterial genera and its relationship with the antimicrobial activity. Toxicol In Vitro. 2016;36:216-23. Epub 2016/08/18. doi: 10.1016/j.tiv.2016.08.007. PubMed PMID: 27530963.

46. Park H-J, Kim JY, Kim J, Lee J-H, Hahn J-S, Gu MB, et al. Silver-ion-mediated reactive oxygen species generation affecting bactericidal activity. Water research. 2009;43(4):1027-32.

47. Hamida RS, Ali MA, Goda DA, Khalil MI, Al-Zaban MI. Novel biogenic silver nanoparticle-induced reactive oxygen species inhibit the biofilm formation and virulence activities of methicillin-resistant Staphylococcus aureus (MRSA) strain. Frontiers in bioengineering and biotechnology. 2020;8:433.

48. Sher N, Alkhalifah DHM, Ahmed M, Mushtaq N, Shah F, Fozia F, et al. Comparative study of antimicrobial activity of silver, gold, and silver/gold bimetallic nanoparticles synthesized by green approach. Molecules. 2022;27(22):7895.

49. Gad SS, Abdelrahim DS, Ismail SH, Ibrahim SM. Selenium and silver nanoparticles: A new approach for treatment of bacterial and viral hepatic infections via modulating oxidative stress and DNA fragmentation. J Biochem Mol Toxicol. 2022;36(3):e22972. Epub 2021/12/30. doi: 10.1002/jbt.22972. PubMed PMID: 34964201.

50. Gad SS, Abdelrahim DS, Ismail SH, Ibrahim SM. Nanotechnology applications for treatment of hepatic infections via modulating Hepatic histopathological and DNA alterations. Bioorg Chem. 2022;127:105927. Epub 2022/07/23. doi: 10.1016/j.bioorg.2022.105927. PubMed PMID: 35868104.

51. Ahn JM, Eom HJ, Yang X, Meyer JN, Choi J. Comparative toxicity of silver nanoparticles on oxidative stress and DNA damage in the nematode, Caenorhabditis elegans. Chemosphere. 2014;108:343-52. Epub 2014/04/15. doi: 10.1016/j.chemosphere.2014.01.078. PubMed PMID: 24726479.

52. Gómez-Gómez B, Arregui L, Serrano S, Santos A, Pérez-Corona T, Madrid Y. Unravelling mechanisms of bacterial quorum sensing disruption by metal-based nanoparticles. Sci Total Environ. 2019;696:133869. Epub 2019/08/27. doi: 10.1016/j.scitotenv.2019.133869. PubMed PMID: 31450048.

53. Ilk S, Tan G, Emül E, Sağlam N. Investigation the potential use of silver nanoparticles synthesized by propolis extract as N-acyl-homoserine lactone-mediated quorum sensing systems inhibitor. Turk J Med Sci. 2020;50(4):1147-56. Epub 2020/04/19. doi: 10.3906/sag-2004-148. PubMed PMID: 32304193; PubMed Central PMCID: PMC7379411.

54. Srinivasan R, Vigneshwari L, Rajavel T, Durgadevi R, Kannappan A, Balamurugan K, et al. Biogenic synthesis of silver nanoparticles using Piper betle aqueous extract and evaluation of its anti-quorum sensing and antibiofilm potential against uropathogens with cytotoxic effects: an in vitro and in vivo approach. Environ Sci Pollut Res Int. 2018;25(11):10538-54. Epub 2017/12/31. doi: 10.1007/s11356-017-1049-0. PubMed PMID: 29288300.

55. Shah S, Gaikwad S, Nagar S, Kulshrestha S, Vaidya V, Nawani N, et al. Biofilm inhibition and anti-quorum sensing activity of phytosynthesized silver nanoparticles against the nosocomial pathogen Pseudomonas aeruginosa. Biofouling. 2019;35(1):34-49. Epub 2019/02/08. doi: 10.1080/08927014.2018.1563686. PubMed PMID: 30727758.

56. Zhou J, Chen T, Cui J, Chen Y, Zhao S, Qu JH, et al. Responses of the microbial community and the production of extracellular polymeric substances to sulfamethazine shocks in a novel two-stage biological contact oxidation system. Front Microbiol. 2023;14:1240435. Epub 2023/09/15. doi: 10.3389/fmicb.2023.1240435. PubMed PMID: 37711695; PubMed Central PMCID: PMC10499511.

57. Tang L, Su C, Fan C, Cao L, Liang Z, Xu Y, et al. Metagenomic and extracellular polymeric substances analysis reveals the mechanism of exogenous N-hexanoyl-L-homoserine lactone in alleviating the inhibition of perfluorooctanoic acid on anammox process. Bioresour Technol. 2023;369:128482. Epub 2022/12/14. doi: 10.1016/j.biortech.2022.128482. PubMed PMID: 36513308.

58. Nabavizadeh MR, Moazzami F, Gholami A, Mehrabi V, Ghahramani Y. Cytotoxic effect of nano fast cement and ProRoot mineral trioxide aggregate on L-929 fibroblast cells: an in vitro study. Journal of Dentistry. 2022;23(1):13.

59. Li H, Chang F, Li Z, Cui F. The Role of Extracellular Polymeric Substances in the Toxicity Response of Anaerobic Granule Sludge to Different Metal Oxide Nanoparticles. Int J Environ Res Public Health. 2022;19(9). Epub 2022/05/15. doi: 10.3390/ijerph19095371. PubMed PMID: 35564766; PubMed Central PMCID: PMC9100327.

60. Huq MA, Akter S. Biosynthesis, Characterization and Antibacterial Application of Novel Silver Nanoparticles against Drug Resistant Pathogenic Klebsiella pneumoniae and Salmonella Enteritidis. Molecules. 2021;26(19). Epub 2021/10/14. doi: 10.3390/molecules26195996. PubMed PMID: 34641540; PubMed Central PMCID: PMC8512087.

61. Chhibber S, Gondil VS, Sharma S, Kumar M, Wangoo N, Sharma RK. A Novel Approach for Combating Klebsiella pneumoniae Biofilm Using Histidine Functionalized Silver Nanoparticles. Front Microbiol. 2017;8:1104. Epub 2017/07/04. doi: 10.3389/fmicb.2017.01104. PubMed PMID: 28670301; PubMed Central PMCID: PMC5472672.

62. Gupta K, Chhibber S. Biofunctionalization of silver nanoparticles with lactonase leads to altered antimicrobial and cytotoxic properties. Frontiers in molecular biosciences. 2019;6:63.

Downloads

Published

2025-04-01

Submitted

2024-12-23

Revised

2025-02-03

Accepted

2025-02-26

How to Cite

Asadi, A. ., Rezaee, M. ., & Ghahramani, Y. . (2025). Sliver Nanoparticles: A Promising Strategy in Preventive Dentistry. Journal of Oral and Dental Health Nexus, 2(2), 24-37. https://doi.org/10.61838/kman.jodhn.2.2.4

Similar Articles

1-10 of 17

You may also start an advanced similarity search for this article.