Gold nanoparticles: A powerful biosensor in oral medicine and dentistry
Keywords:
Gold nanoparticles, Oral diagnostics, Biosensor technology, Surface plasmon resonance, NanotechnologyAbstract
Gold nanoparticles (AuNPs) have emerged as highly effective biosensing agents in oral diagnostics and therapeutic monitoring due to their unique optical, electronic, and surface properties. Their exceptional surface plasmon resonance enables sensitive detection of biomolecules associated with oral diseases, including cancer markers, bacterial antigens, and inflammatory proteins. Functionalized AuNPs can selectively bind to target molecules, allowing for real-time, non-invasive diagnostics through colorimetric assays, fluorescence quenching, and surface-enhanced Raman spectroscopy (SERS). In clinical dentistry, AuNP-based biosensors facilitate early diagnosis of conditions such as periodontal disease, oral squamous cell carcinoma, and peri-implantitis. Their biocompatibility and chemical stability further support integration into smart diagnostic platforms and intraoral devices. As precision dentistry advances, gold nanoparticle biosensors hold promise for transforming point-of-care diagnostics, enabling timely and personalized interventions.
Downloads
References
1. Mousavi SM, Hashemi SA, Mazraedoost S, Chiang W-H, Yousefi K, Arjmand O, et al. Anticancer, antimicrobial and biomedical features of polyoxometalate as advanced materials: A review study. Inorganic Chemistry Communications. 2022;146:110074.
2. Dowling AP. Development of nanotechnologies. Materials today. 2004;7(12):30-5.
3. Joudeh N, Linke D. Nanoparticle classification, physicochemical properties, characterization, and applications: a comprehensive review for biologists. Journal of Nanobiotechnology. 2022;20(1):262.
4. Eskandari F, Abbaszadegan A, Gholami A, Ghahramani Y. The antimicrobial efficacy of graphene oxide, double antibiotic paste, and their combination against Enterococcus faecalis in the root canal treatment. BMC Oral Health. 2023;23(1):20.
5. Biswas P, Wu C-Y. Nanoparticles and the environment. Journal of the air & waste management association. 2005;55(6):708-46.
6. Zhang L, Gu F, Chan J, Wang A, Langer R, Farokhzad O. Nanoparticles in medicine: therapeutic applications and developments. Clinical pharmacology & therapeutics. 2008;83(5):761-9.
7. Matsui I. Nanoparticles for electronic device applications: a brief review. Journal of chemical engineering of Japan. 2005;38(8):535-46.
8. Baxter J, Bian Z, Chen G, Danielson D, Dresselhaus MS, Fedorov AG, et al. Nanoscale design to enable the revolution in renewable energy. Energy & Environmental Science. 2009;2(6):559-88.
9. Ghahramani Y, Yaghoobi F, Motamedi R, Jamshidzadeh A, Abbaszadegan A. Effect of Endodontic Irrigants and Medicaments Mixed with Silver Nanoparticles against Biofilm Formation of Enterococcus faecalis. Iran Endod J. 2018;13(4):559-64. Epub 2018/10/01. doi: 10.22037/iej.v13i4.21843. PubMed PMID: 36883019; PubMed Central PMCID: PMC9985693.
10. Nabavizadeh M, Ghahramani Y, Abbaszadegan A, Jamshidzadeh A, Jenabi P, Makarempour A. In vivo biocompatibility of an ionic liquid-protected silver nanoparticle solution as root canal irrigant. Iranian endodontic journal. 2018;13(3):293.
11. De Jong WH, Borm PJ. Drug delivery and nanoparticles: applications and hazards. International journal of nanomedicine. 2008;3(2):133-49.
12. Mousavi SM, Nezhad FF, Ghahramani Y, Binazadeh M, Javidi Z, Azhdari R, et al. Recent Advances in Bioactive Carbon Nanotubes Based on Polymer Composites for Biosensor Applications. Chem Biodivers. 2024;21(7):e202301288. Epub 2024/05/03. doi: 10.1002/cbdv.202301288. PubMed PMID: 38697942.
13. Adl A, Abbaszadegan A, Gholami A, Parvizi F, Ghahramani Y. Effect of a New Imidazolium-based Silver Nanoparticle Irrigant on the Bond Strength of Epoxy Resin Sealer to Root Canal Dentine. Iran Endod J. 2019;14(2):122-5. Epub 2019/04/01. doi: 10.22037/iej.v14i2.22589. PubMed PMID: 36855446; PubMed Central PMCID: PMC9968383.
14. Payal, Pandey P. Role of nanotechnology in electronics: A review of recent developments and patents. Recent patents on nanotechnology. 2022;16(1):45-66.
15. Moazami F, Gholami A, Mehrabi V, Ghahramani Y. Evaluation of the Antibacterial and Antifungal Effects of ProRoot MTA and Nano-fast Cement: An In Vitro Study. J Contemp Dent Pract. 2020;21(7):760-4. Epub 2020/10/07. PubMed PMID: 33020359.
16. Porter AL, Youtie J. How interdisciplinary is nanotechnology? Journal of nanoparticle research. 2009;11:1023-41.
17. Nabavizadeh MR, Moazzami F, Gholami A, Mehrabi V, Ghahramani Y. Cytotoxic Effect of Nano Fast Cement and ProRoot Mineral Trioxide Aggregate on L-929 Fibroblast Cells: an in vitro Study. J Dent (Shiraz). 2022;23(1):13-9. Epub 2022/03/17. doi: 10.30476/dentjods.2021.87208.1239. PubMed PMID: 35291684; PubMed Central PMCID: PMC8918640.
18. Pokrajac L, Abbas A, Chrzanowski W, Dias GM, Eggleton BJ, Maguire S, et al. Nanotechnology for a sustainable future: Addressing global challenges with the international network4sustainable nanotechnology. ACS Publications; 2021.
19. Kumar YR, Deshmukh K, Sadasivuni KK, Pasha SK. Graphene quantum dot based materials for sensing, bio-imaging and energy storage applications: a review. RSC advances. 2020;10(40):23861-98.
20. Isibor PO. Regulations and policy considerations for nanoparticle safety. Environmental Nanotoxicology: Combatting the Minute Contaminants: Springer; 2024. p. 295-316.
21. Tawiah B, Ofori EA, George SC. Nanotechnology in societal development. Nanotechnology in Societal Development: Springer; 2024. p. 1-64.
22. Mousavi SM, Hashemi SA, Fallahi Nezhad F, Binazadeh M, Dehdashtijahromi M, Omidifar N, et al. Innovative Metal-Organic Frameworks for Targeted Oral Cancer Therapy: A Review. Materials (Basel). 2023;16(13). Epub 2023/07/14. doi: 10.3390/ma16134685. PubMed PMID: 37444999; PubMed Central PMCID: PMC10342828.
23. Li Y, Schluesener HJ, Xu S. Gold nanoparticle-based biosensors. Gold Bulletin. 2010;43(1):29-41.
24. Abbaszadegan A, Ghahramani Y, Farshad M, Sedigh-Shams M, Gholami A, Jamshidzadeh A. In Vitro Evaluation of Dynamic Viscosity, Surface Tension and Dentin Wettability of Silver Nanoparticles as an Irrigation Solution. Iran Endod J. 2019;14(1):23-7. Epub 2019/01/01. doi: 10.22037/iej.v14i1.21758. PubMed PMID: 36879595; PubMed Central PMCID: PMC9984811.
25. Saha K, Agasti SS, Kim C, Li X, Rotello VM. Gold Nanoparticles in Chemical and Biological Sensing. Chemical Reviews. 2012;112(5):2739-79. doi: 10.1021/cr2001178.
26. Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA. Gold nanoparticles for biology and medicine. Spherical nucleic acids. 2020:55-90.
27. Jain PK, Lee KS, El-Sayed IH, El-Sayed MA. Calculated Absorption and Scattering Properties of Gold Nanoparticles of Different Size, Shape, and Composition: Applications in Biological Imaging and Biomedicine. The Journal of Physical Chemistry B. 2006;110(14):7238-48. doi: 10.1021/jp057170o.
28. Rosi NL, Mirkin CA. Nanostructures in Biodiagnostics. Chemical Reviews. 2005;105(4):1547-62. doi: 10.1021/cr030067f.
29. Chen A, Chatterjee S. Nanomaterials based electrochemical sensors for biomedical applications. Chemical Society Reviews. 2013;42(12):5425-38.
30. Alkilany AM, Murphy CJ. Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? Journal of nanoparticle research. 2010;12:2313-33.
31. Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA. The golden age: gold nanoparticles for biomedicine. Chemical Society Reviews. 2012;41(7):2740-79.
32. Zhan X, Yan J, Tang H, Xia D, Lin H. Antibacterial properties of gold nanoparticles in the modification of medical implants: a systematic review. Pharmaceutics. 2022;14(12):2654.
33. Svärd A, Neilands J, Palm E, Svensäter G, Bengtsson Tr, Aili D. Protein-functionalized gold nanoparticles as refractometric nanoplasmonic sensors for the detection of proteolytic activity of porphyromonas gingivalis. ACS Applied Nano Materials. 2020;3(10):9822-30.
34. de la Rica R, Stevens MM. Plasmonic ELISA for the ultrasensitive detection of disease biomarkers with the naked eye. Nature Nanotechnology. 2012;7(12):821-4. doi: 10.1038/nnano.2012.186.
35. Lévy R, Thanh NTK, Doty RC, Hussain I, Nichols RJ, Schiffrin DJ, et al. Rational and Combinatorial Design of Peptide Capping Ligands for Gold Nanoparticles. Journal of the American Chemical Society. 2004;126(32):10076-84. doi: 10.1021/ja0487269.
36. Zhang Q, Hou D, Wen X, Xin M, Li Z, Wu L, et al. Gold nanomaterials for oral cancer diagnosis and therapy: Advances, challenges, and prospects. Materials Today Bio. 2022;15:100333. doi: https://doi.org/10.1016/j.mtbio.2022.100333.
37. Bapat RA, Chaubal TV, Dharmadhikari S, Abdulla AM, Bapat P, Alexander A, et al. Recent advances of gold nanoparticles as biomaterial in dentistry. International journal of pharmaceutics. 2020;586:119596.
38. Kumar A, Zhang X, Liang X-J. Gold nanoparticles: emerging paradigm for targeted drug delivery system. Biotechnology advances. 2013;31(5):593-606.
39. Balapure A, Goel S, Dubey SK, Javed A, Chattopadhyay S. A review: early detection of oral cancer biomarkers using microfluidic colorimetric point-of-care devices. Analytical Methods. 2024.
40. Tai J, Fan S, Ding S, Ren L. Gold nanoparticles based optical biosensors for cancer biomarker proteins: a review of the current practices. Frontiers in bioengineering and biotechnology. 2022;10:877193.
41. El-Sayed IH, Huang X, El-Sayed MA. Surface Plasmon Resonance Scattering and Absorption of anti-EGFR Antibody Conjugated Gold Nanoparticles in Cancer Diagnostics: Applications in Oral Cancer. Nano Letters. 2005;5(5):829-34. doi: 10.1021/nl050074e.
42. Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature. 1996;382(6592):607-9. doi: 10.1038/382607a0.
43. Di Nardo F, Cavalera S, Baggiani C, Giovannoli C, Anfossi L. Direct vs Mediated Coupling of Antibodies to Gold Nanoparticles: The Case of Salivary Cortisol Detection by Lateral Flow Immunoassay. ACS Applied Materials & Interfaces. 2019;11(36):32758-68. doi: 10.1021/acsami.9b11559.
44. Indrasekara ASD, Paladini BJ, Naczynski DJ, Starovoytov V, Moghe PV, Fabris L. Dimeric Gold Nanoparticle Assemblies as Tags for SERS‐Based Cancer Detection. Advanced healthcare materials. 2013;2(10):1370-6.
45. Kalashgrani MY, Mousavi SM, Akmal MH, Gholami A, Omidifar N, Chiang WH, et al. Gold fluorescence nanoparticles for enhanced SERS detection in biomedical sensor applications: current trends and future directions. The Chemical Record. 2024:e202300303.
46. Hang Y, Wang A, Wu N. Plasmonic silver and gold nanoparticles: shape-and structure-modulated plasmonic functionality for point-of-caring sensing, bio-imaging and medical therapy. Chemical Society Reviews. 2024;53(6):2932-71.
47. Choi N, Dang H, Das A, Sim MS, Chung IY, Choo J. SERS biosensors for ultrasensitive detection of multiple biomarkers expressed in cancer cells. Biosensors and Bioelectronics. 2020;164:112326.
48. Kah JCY, Wei KK, Leng LCG, James RC, Sheppard, Xiang SZ, et al. Early diagnosis of oral cancer based on the surface plasmon resonance of gold nanoparticles. International Journal of Nanomedicine. 2007;2(4):785-98. doi: 10.2147/IJN.S2.4.785.
49. Onishi T, Mihara K, Matsuda S, Sakamoto S, Kuwahata A, Sekino M, et al. Application of magnetic nanoparticles for rapid detection and in situ diagnosis in clinical oncology. Cancers. 2022;14(2):364.
50. Chen Y, Sun B, Marcella C. Evaluation of the diagnostic accuracy of superparamagnetic iron oxide nanoparticles on breast cancer: a systematic review and meta-analysis. International Journal of Scientific Research in Dental and Medical Sciences. 2023;5(1):27-34.
51. Viswambari Devi R, Doble M, Verma RS. Nanomaterials for early detection of cancer biomarker with special emphasis on gold nanoparticles in immunoassays/sensors. Biosensors and Bioelectronics. 2015;68:688-98. doi: https://doi.org/10.1016/j.bios.2015.01.066.
52. Connolly JM, Davies K, Kazakeviciute A, Wheatley AM, Dockery P, Keogh I, et al. Non-invasive and label-free detection of oral squamous cell carcinoma using saliva surface-enhanced Raman spectroscopy and multivariate analysis. Nanomedicine: Nanotechnology, Biology and Medicine. 2016;12(6):1593-601. doi: https://doi.org/10.1016/j.nano.2016.02.021.
53. Svärd A, Neilands J, Palm E, Svensäter G, Bengtsson T, Aili D. Protein-Functionalized Gold Nanoparticles as Refractometric Nanoplasmonic Sensors for the Detection of Proteolytic Activity of Porphyromonas gingivalis. ACS Applied Nano Materials. 2020;3(10):9822-30. doi: 10.1021/acsanm.0c01899.
54. Cesewski E, Johnson BN. Electrochemical biosensors for pathogen detection. Biosensors and Bioelectronics. 2020;159:112214. doi: https://doi.org/10.1016/j.bios.2020.112214.
55. Verma S, Singh A, Shukla A, Kaswan J, Arora K, Ramirez-Vick J, et al. Anti-IL8/AuNPs-rGO/ITO as an immunosensing platform for noninvasive electrochemical detection of oral cancer. ACS applied materials & interfaces. 2017;9(33):27462-74.
56. Berry ME, Kearns H, Graham D, Faulds K. Surface enhanced Raman scattering for the multiplexed detection of pathogenic microorganisms: towards point-of-use applications. Analyst. 2021;146(20):6084-101.
57. Zhang Q, Wang Z, Shen S, Wang J, Cao J, Deng Y, et al. Integrating enzyme-nanoparticles bring new prospects for the diagnosis and treatment of immune dysregulation in periodontitis. Frontiers in Cellular and Infection Microbiology. 2024;Volume 14 - 2024. doi: 10.3389/fcimb.2024.1494651.
58. Baek SH, Song HW, Lee S, Kim J-E, Kim YH, Wi J-S, et al. Gold Nanoparticle-Enhanced and Roll-to-Roll Nanoimprinted LSPR Platform for Detecting Interleukin-10. Frontiers in Chemistry. 2020;Volume 8 - 2020. doi: 10.3389/fchem.2020.00285.
59. Karami P, Afsar T, Gholamin D, Pahlavan Y, Johari-Ahar M. Nanoparticles-based biosensor devices developed for point-of-care (POC) analyses of c-reactive protein (CRP) as the clinically important inflammatory biomarker. Chemical Papers. 2025;79(2):615-35.
60. Tortolini C, Gigli V, Angeloni A, Tasca F, Thanh NTK, Antiochia R. A disposable immunosensor for the detection of salivary MMP-8 as biomarker of periodontitis. Bioelectrochemistry. 2024;156:108590. doi: https://doi.org/10.1016/j.bioelechem.2023.108590.
61. Khoshfetrat SM, Seyed Dorraji P, Shayan M, Khatami F, Omidfar K. Smartphone-based electrochemiluminescence for visual simultaneous detection of RASSF1A and SLC5A8 tumor suppressor gene methylation in thyroid cancer patient plasma. Analytical chemistry. 2022;94(22):8005-13.
62. D’Amico E, Aceto GM, Petrini M, Cinquini C, D’Ercole S, Iezzi G, et al. How Will Nanomedicine Revolutionize Future Dentistry and Periodontal Therapy? International Journal of Molecular Sciences. 2025;26(2):592. PubMed PMID: doi:10.3390/ijms26020592.
63. Aminu N, Chan S-Y, Toh S-M. Roles of nanotechnological approaches in periodontal disease therapy. Journal of Applied Pharmaceutical Science. 2017;7(7):234-42.
64. Zhu T, Huang Z, Shu X, Zhang C, Dong Z, Peng Q. Functional nanomaterials and their potentials in antibacterial treatment of dental caries. Colloids and Surfaces B: Biointerfaces. 2022;218:112761.
65. Yang J, Wang X, Sun Y, Chen B, Hu F, Guo C, et al. Recent advances in colorimetric sensors based on gold nanoparticles for pathogen detection. Biosensors. 2022;13(1):29.
66. Webster MS, Cooper JS, Chow E, Hubble LJ, Sosa-Pintos A, Wieczorek L, et al. Detection of bacterial metabolites for the discrimination of bacteria utilizing gold nanoparticle chemiresistor sensors. Sensors and Actuators B: Chemical. 2015;220:895-902.
67. Ivleva NP, Wagner M, Horn H, Niessner R, Haisch C. Raman microscopy and surface‐enhanced Raman scattering (SERS) for in situ analysis of biofilms. Journal of biophotonics. 2010;3(8‐9):548-56.
68. Kamath KA, Nasim I, Rajeshkumar S. Evaluation of the re-mineralization capacity of a gold nanoparticle-based dental varnish: An: in vitro: study. Journal of Conservative Dentistry. 2020;23(4):390-4.
69. Su C, Huang K, Li H-H, Lu Y-G, Zheng D-L. Antibacterial properties of functionalized gold nanoparticles and their application in oral biology. Journal of Nanomaterials. 2020;2020(1):5616379.
70. Han Q, Lau JW, Do TC, Zhang Z, Xing B. Near-Infrared Light Brightens Bacterial Disinfection: Recent Progress and Perspectives. ACS Applied Bio Materials. 2021;4(5):3937-61. doi: 10.1021/acsabm.0c01341.
71. Chen X, Liu H, Zhang Q, Chen X, Wang L, Yu Y, et al. Carboxymethyl chitosan stabilized AuNPs/ACP nanohybrids in enamel white spot lesions. Frontiers in Bioengineering and Biotechnology. 2024;12:1421887.
72. Joshi AS, Singh P, Mijakovic I. Interactions of Gold and Silver Nanoparticles with Bacterial Biofilms: Molecular Interactions behind Inhibition and Resistance. International Journal of Molecular Sciences. 2020;21(20):7658. PubMed PMID: doi:10.3390/ijms21207658.
73. Askari VR, Moradpour A, Alizadeh O, Fadaei MS, Fadaei MR. Biosensors in dentistry. Applications of Biosensors in Healthcare: Elsevier; 2025. p. 399-416.
74. Ray RR, Pattnaik S. Technological advancements for the management of oral biofilm. Biocatalysis and Agricultural Biotechnology. 2024;56:103017. doi: https://doi.org/10.1016/j.bcab.2023.103017.
75. He Y, Vasilev K, Zilm P. pH-Responsive Biomaterials for the Treatment of Dental Caries—A Focussed and Critical Review. Pharmaceutics. 2023;15(7):1837. PubMed PMID: doi:10.3390/pharmaceutics15071837.
76. Amruth B, Somashekarappa H, Maurya M, Nandaprakash M, Somashekar R. Molecular dynamic studies of gold nanoparticles in a dental material TEGDMA. Journal of Molecular Modeling. 2025;31(1):27.
77. Arunkumar S, Arunkumar J, Krishna N, Shakunthala G. Developments in diagnostic applications of saliva in oral and systemic diseases-A comprehensive review. J Sci Innov Res. 2014;3(3):372-87.
78. Viswanath B, Choi CS, Lee K, Kim S. Recent trends in the development of diagnostic tools for diabetes mellitus using patient saliva. TrAC Trends in Analytical Chemistry. 2017;89:60-7.
79. Turner DO, Williams-Cocks SJ, Bullen R, Catmull J, Falk J, Martin D, et al. High-risk human papillomavirus (HPV) screening and detection in healthy patient saliva samples: a pilot study. BMC oral health. 2011;11:1-8.
80. Li Y, Ou Y, Fan K, Liu G. Salivary diagnostics: Opportunities and challenges. Theranostics. 2024;14(18):6969.
81. Chakraborty D, Viveka TS, Arvind K, Shyamsundar V, Kanchan M, Alex SA, et al. A facile gold nanoparticle–based ELISA system for detection of osteopontin in saliva: Towards oral cancer diagnostics. Clinica Chimica Acta. 2018;477:166-72.
82. Jazayeri MH, Aghaie T, Nedaeinia R, Manian M, Nickho H. Rapid noninvasive detection of bladder cancer using survivin antibody-conjugated gold nanoparticles (GNPs) based on localized surface plasmon resonance (LSPR). Cancer Immunology, Immunotherapy. 2020;69:1833-40.
83. Maher S, Kamel M, Demerdash Z, El Baz H, Sayyouh O, Saad A, et al. Gold conjugated nanobodies in a signal-enhanced lateral flow test strip for rapid detection of SARS-CoV-2 S1 antigen in saliva samples. Scientific Reports. 2023;13(1):10643.
84. Lei R, Wang D, Arain H, Mohan C. Design of gold nanoparticle vertical flow assays for point-of-care testing. Diagnostics. 2022;12(5):1107.
85. Minaee S, Sohrabi MR, Mortazavinik S. Rapid and naked-eye colorimetric detection of ultra trace sumatriptan in drinking water, saliva, and human urine samples based on the aggregation of gold nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2023;302:123039.
86. He W, You M, Li Z, Cao L, Xu F, Li F, et al. Upconversion nanoparticles-based lateral flow immunoassay for point-of-care diagnosis of periodontitis. Sensors and Actuators B: Chemical. 2021;334:129673.
87. Chen X, Du C, Zhao Q, Zhao Q, Wan Y, He J, et al. Rapid and visual identification of HIV-1 using reverse transcription loop-mediated isothermal amplification integrated with a gold nanoparticle-based lateral flow assay platform. Frontiers in Microbiology. 2023;14:1230533.
88. Ang SH, Yu CY, Ang GY, Chan YY, binti Alias Y, Khor SM. A colloidal gold-based lateral flow immunoassay for direct determination of haemoglobin A1c in whole blood. Analytical Methods. 2015;7(9):3972-80.
89. Cho I-H, Bhunia A, Irudayaraj J. Rapid pathogen detection by lateral-flow immunochromatographic assay with gold nanoparticle-assisted enzyme signal amplification. International Journal of Food Microbiology. 2015;206:60-6. doi: https://doi.org/10.1016/j.ijfoodmicro.2015.04.032.
90. Kang KA, Wang J, Jasinski JB, Achilefu S. Fluorescence manipulation by gold nanoparticles: from complete quenching to extensive enhancement. Journal of nanobiotechnology. 2011;9:1-13.
91. Saha A, Ben Halima H, Saini A, Gallardo-Gonzalez J, Zine N, Viñas C, et al. Magnetic Nanoparticles Fishing for Biomarkers in Artificial Saliva. Molecules. 2020;25(17):3968. PubMed PMID: doi:10.3390/molecules25173968.
92. Huang L, Tian S, Zhao W, Liu K, Ma X, Guo J. Multiplexed detection of biomarkers in lateral-flow immunoassays. Analyst. 2020;145(8):2828-40.
93. Li Y, Ou Y, Fan K, Liu G. Salivary diagnostics: opportunities and challenges. Theranostics. 2024;14(18):6969-90. Epub 20241021. doi: 10.7150/thno.100600. PubMed PMID: 39629130; PubMed Central PMCID: PMC11610148.
94. Park J. Smartphone based lateral flow immunoassay quantifications. Journal of Immunological Methods. 2024;533:113745. doi: https://doi.org/10.1016/j.jim.2024.113745.
95. Shang L-J, Yu S-Q, Shang X-W, Wei X-Y, Wang H-Y, Jiang W-S, et al. A non-invasive glucose sensor based on 3D reduced graphene oxide-MXene and AuNPs composite electrode for the detection of saliva glucose. Journal of Applied Electrochemistry. 2024;54(8):1807-17.
96. Eftekhari A, Hasanzadeh M, Sharifi S, Dizaj SM, Khalilov R, Ahmadian E. Bioassay of saliva proteins: The best alternative for conventional methods in non-invasive diagnosis of cancer. International Journal of Biological Macromolecules. 2019;124:1246-55. doi: https://doi.org/10.1016/j.ijbiomac.2018.11.277.
97. Pomili T, Donati P, Pompa PP. Based multiplexed colorimetric device for the simultaneous detection of salivary biomarkers. Biosensors. 2021;11(11):443.
98. Jongrungsomran S, Pissuwan D, Yavirach A, Rungsiyakull C, Rungsiyakull P. The integration of gold nanoparticles into dental biomaterials as a novel approach for clinical advancement: A narrative review. Journal of Functional Biomaterials. 2024;15(10):291.
99. Kadhim RJ, Karsh EH, Taqi ZJ, Jabir MS. Biocompatibility of gold nanoparticles: In-vitro and In-vivo study. Materials Today: Proceedings. 2021;42:3041-5.
100. Kumaar NR, and Nair SC. Nanomaterials: an intra-periodontal Pocket drug-delivery System for Periodontitis. Therapeutic Delivery. 2023;14(3):227-49. doi: 10.4155/tde-2023-0001.
101. Anwar A, Siddiqui R, Shah M, Khan N. Gold nanoparticles conjugation enhances antiacanthamoebic properties of nystatin, fluconazole and amphotericin B. 2019.
102. Liu Z, Shi J, Zhu B, Xu Q. Development of a multifunctional gold nanoplatform for combined chemo-photothermal therapy against oral cancer. Nanomedicine. 2020;15(7):661-76.
103. Voliani V, Signore G, Nifosi R, Ricci F, Luin S, Beltram F. Smart delivery and controlled drug release with gold nanoparticles: new frontiers in nanomedicine. Recent Patents on Nanomedicine. 2012;2(1):34-44.
104. Dykman L, Khlebtsov N. Gold nanoparticles in biomedical applications: recent advances and perspectives. Chemical Society Reviews. 2012;41(6):2256-82.
105. Allaker RP, Memarzadeh K. Nanoparticles and the control of oral infections. International journal of antimicrobial agents. 2014;43(2):95-104.
106. Zhang M, Liu X, Xie Y, Zhang Q, Zhang W, Jiang X, et al. Biological safe gold nanoparticle-modified dental aligner prevents the Porphyromonas gingivalis biofilm formation. ACS omega. 2020;5(30):18685-92.
107. Haddada MB, Jeannot K, Spadavecchia J. Novel Synthesis and Characterization of Doxycycline‐Loaded Gold Nanoparticles: The Golden Doxycycline for Antibacterial Applications. Particle & Particle Systems Characterization. 2019;36(2):1800395.
108. Huq MA, Ashrafudoulla M, Parvez MAK, Balusamy SR, Rahman MM, Kim JH, et al. Chitosan-coated polymeric silver and gold nanoparticles: biosynthesis, characterization and potential antibacterial applications: a review. Polymers. 2022;14(23):5302.
109. Calvo NL, Sreekumar S, Svetaz LA, Lamas MC, Moerschbacher BM, Leonardi D. Design and characterization of chitosan nanoformulations for the delivery of antifungal agents. International journal of molecular sciences. 2019;20(15):3686.
110. Sousa F, Ferreira D, Reis S, Costa P. Current Insights on Antifungal Therapy: Novel Nanotechnology Approaches for Drug Delivery Systems and New Drugs from Natural Sources. Pharmaceuticals. 2020;13(9):248. PubMed PMID: doi:10.3390/ph13090248.
111. Azzopardi EA, Ferguson EL, Thomas DW. The enhanced permeability retention effect: a new paradigm for drug targeting in infection. Journal of Antimicrobial Chemotherapy. 2013;68(2):257-74.
112. Comenge J, Sotelo C, Romero F, Gallego O, Barnadas A, Parada TG-C, et al. Detoxifying antitumoral drugs via nanoconjugation: the case of gold nanoparticles and cisplatin. 2012.
113. Riley RS, Day ES. Gold nanoparticle‐mediated photothermal therapy: applications and opportunities for multimodal cancer treatment. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology. 2017;9(4):e1449.
114. Song W, Ge S. Application of antimicrobial nanoparticles in dentistry. Molecules. 2019;24(6):1033.
115. Dharman S, Kumar R, Shanmugasundaram K. Synthesis and characterisation of novel turmeric gold nanoparticles and evaluation of its anti-oxidant, anti-inflammatory, antibacterial activity for application in oral mucositis-An in vitro study. Int J Dentistry Oral Sci. 2021;8(05):2525-32.
116. Pecci-Lloret MP, Gea-Alcocer S, Murcia-Flores L, Rodríguez-Lozano FJ, Oñate-Sánchez RE. Use of nanoparticles in Regenerative Dentistry: a systematic review. Biomimetics. 2024;9(4):243.
117. Niżnik Ł, Noga M, Kobylarz D, Frydrych A, Krośniak A, Kapka-Skrzypczak L, et al. Gold Nanoparticles (AuNPs)—Toxicity, Safety and Green Synthesis: A Critical Review. International Journal of Molecular Sciences. 2024;25(7):4057. PubMed PMID: doi:10.3390/ijms25074057.
118. Nam J, Won N, Jin H, Chung H, Kim S. pH-induced aggregation of gold nanoparticles for photothermal cancer therapy. Journal of the American Chemical Society. 2009;131(38):13639-45.
119. Amina SJ, Guo B. A review on the synthesis and functionalization of gold nanoparticles as a drug delivery vehicle. International journal of nanomedicine. 2020:9823-57.
120. Roy A. Targeted drug delivery systems used in dentistry-A short review. Drug Invention Today. 2018;10.
121. Yang W, Liang H, Ma S, Wang D, Huang J. Gold nanoparticle based photothermal therapy: Development and application for effective cancer treatment. Sustainable Materials and Technologies. 2019;22:e00109.
122. Gupta A, Singh S. Multimodal potentials of gold nanoparticles for bone tissue engineering and regenerative medicine: avenues and prospects. Small. 2022;18(29):2201462.
123. Sun Y, Xu W, Jiang C, Zhou T, Wang Q. Gold nanoparticle decoration potentiate the antibacterial enhancement of TiO2 nanotubes via sonodynamic therapy against peri-implant infections. Frontiers in Bioengineering and Biotechnology. 2022;10:1074083.
124. Lee SJ, Lee H-J, Kim S-Y, Seok JM, Lee JH, Kim WD, et al. In situ gold nanoparticle growth on polydopamine-coated 3D-printed scaffolds improves osteogenic differentiation for bone tissue engineering applications: in vitro and in vivo studies. Nanoscale. 2018;10(33):15447-53.
125. Guerrero AR, Hassan N, Escobar CA, Albericio F, Kogan MJ, Araya E. Gold nanoparticles for photothermally controlled drug release. Nanomedicine. 2014;9(13):2023-39.
126. Heo DN, Ko W-K, Lee HR, Lee SJ, Lee D, Um SH, et al. Titanium dental implants surface-immobilized with gold nanoparticles as osteoinductive agents for rapid osseointegration. Journal of colloid and interface science. 2016;469:129-37.
127. Liu H, Carter P, Laan A, Eelkema R, Denkova A. Singlet Oxygen Sensor Green is not a suitable probe for 1O2 in the presence of ionizing radiation, Sci. Rep. 9 (2019) 1–8.
128. Xu J, Liu N, Wu D, Gao Z, Song Y-Y, Schmuki P. Upconversion nanoparticle-assisted payload delivery from TiO2 under near-infrared light irradiation for bacterial inactivation. ACS nano. 2019;14(1):337-46.
129. Xu T, Zhao S, Lin C, Zheng X, Lan M. Recent advances in nanomaterials for sonodynamic therapy. Nano Research. 2020;13:2898-908.
130. Zhu W, Chen Q, Jin Q, Chao Y, Sun L, Han X, et al. Sonodynamic therapy with immune modulatable two-dimensional coordination nanosheets for enhanced anti-tumor immunotherapy. Nano Research. 2021;14:212-21.
131. Jie H, Park H, Chae K-H, Anpo M, Park J-K. Suppressed recombination of electrons and holes and its role on the improvement of photoreactivity of flame-synthesized TiO2 nanopowders. Chemical Physics Letters. 2009;470(4-6):269-74.
132. Samadian H, Khastar H, Ehterami A, Salehi M. Bioengineered 3D nanocomposite based on gold nanoparticles and gelatin nanofibers for bone regeneration: In vitro and in vivo study. Scientific reports. 2021;11(1):13877.
133. Zhang Y, Wang P, Wang Y, Li J, Qiao D, Chen R, et al. Gold nanoparticles promote the bone regeneration of periodontal ligament stem cell sheets through activation of autophagy. International journal of nanomedicine. 2021:61-73.
134. Li H, Pan S, Xia P, Chang Y, Fu C, Kong W, et al. Advances in the application of gold nanoparticles in bone tissue engineering. Journal of biological engineering. 2020;14:1-15.
135. Li CM, Zhen SJ, Wang J, Li YF, Huang CZ. A gold nanoparticles-based colorimetric assay for alkaline phosphatase detection with tunable dynamic range. Biosensors and Bioelectronics. 2013;43:366-71. doi: https://doi.org/10.1016/j.bios.2012.12.015.
136. Tiwari PM, Vig K, Dennis VA, Singh SR. Functionalized gold nanoparticles and their biomedical applications. Nanomaterials. 2011;1(1):31-63.
137. Li H, Pan S, Xia P, Chang Y, Fu C, Kong W, et al. Advances in the application of gold nanoparticles in bone tissue engineering. Journal of Biological Engineering. 2020;14(1):14. doi: 10.1186/s13036-020-00236-3.
138. Yadid M, Feiner R, Dvir T. Gold nanoparticle-integrated scaffolds for tissue engineering and regenerative medicine. Nano letters. 2019;19(4):2198-206.
139. Heo DN, Ko W-K, Bae MS, Lee JB, Lee D-W, Byun W, et al. Enhanced bone regeneration with a gold nanoparticle–hydrogel complex. Journal of Materials Chemistry B. 2014;2(11):1584-93.
140. Moore JA, Chow JCL. Recent progress and applications of gold nanotechnology in medical biophysics using artificial intelligence and mathematical modeling. Nano Express. 2021;2(2):022001. doi: 10.1088/2632-959X/abddd3.
141. Liu X, Dai Q, Austin L, Coutts J, Knowles G, Zou J, et al. A one-step homogeneous immunoassay for cancer biomarker detection using gold nanoparticle probes coupled with dynamic light scattering. Journal of the American Chemical Society. 2008;130(9):2780-2.
142. Hegde M, Pai P, Shetty MG, Babitha KS. Gold nanoparticle based biosensors for rapid pathogen detection: A review. Environmental Nanotechnology, Monitoring & Management. 2022;18:100756.
143. António M, Lima T, Vitorino R, Daniel-da-Silva AL. Interaction of colloidal gold nanoparticles with urine and saliva biofluids: An exploratory study. Nanomaterials. 2022;12(24):4434.
144. Wang L, O ‘Donoghue MB, Tan W. Nanoparticles for multiplex diagnostics and imaging. Nanomedicine. 2006;1(4):413-26.
145. Kaur B, Kaur K, editors. Using Artificial Intelligence and Mathematical Modeling for Advancement of Gold Nanotechnology in Therapeutic Biophysics. 2021 2nd Global Conference for Advancement in Technology (GCAT); 2021: IEEE.
146. Arya SS, Dias SB, Jelinek HF, Hadjileontiadis LJ, Pappa A-M. The convergence of traditional and digital biomarkers through AI-assisted biosensing: A new era in translational diagnostics? Biosensors and Bioelectronics. 2023;235:115387.
147. Panahi O, Panahi U. AI-Powered IoT: Transforming Diagnostics and Treatment Planning in Oral Implantology. J Adv Artif Intell Mach Learn. 2025;1(1):1-4.
148. Xu X, Wu X, Kuang H, Song S. Gold nanoparticle-based lateral flow strips for rapid and sensitive detection of Virginiamycin M1. Food and Agricultural Immunology. 2020;31(1):764-77.
149. Timpel J, Klinghammer S, Riemenschneider L, Ibarlucea B, Cuniberti G, Hannig C, et al. Sensors for in situ monitoring of oral and dental health parameters in saliva. Clinical Oral Investigations. 2023;27(10):5719-36.
Downloads
Published
Submitted
Revised
Accepted
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.