Theranostic Nanomaterials in Dentistry: Dual-Function Platforms for Diagnosis and Therapy
Keywords:
Dental nanotheranostics, Smart hydrogel systems, Oral microenvironment modulation, Nano-enabled caries prevention, Intelligent implant interfacesAbstract
Smart nanomaterials are redefining the future of dental science by offering dynamic, stimuli-responsive solutions that adapt to the oral microenvironment. Engineered to react to biochemical and physical triggers such as pH variations, bacterial metabolites, and enzymatic activity, these materials facilitate localized, on-demand therapeutic responses. Their versatility spans across preventive and therapeutic domains—ranging from anti-microbial implant coatings and biofilm-disrupting agents to bioactive remineralizers and site-specific drug delivery vehicles. Innovations such as nanostructured scaffolds for guided tissue regeneration, theranostic platforms for oral malignancies, and smart analgesic systems illustrate the expanding frontier of nanotechnology in dentistry. While challenges persist in terms of regulatory compliance, long-term safety, and commercial translation, smart nanomaterials stand at the forefront of personalized, minimally invasive, and multifunctional dental care.
Downloads
References
1. Findik F. Nanomaterials and their applications. Period Eng Nat Sci. 2021;9(3):62-75.
2. Patel JK, Patel A, Bhatia D. Introduction to Nanomaterials and Nanotechnology. In: Patel JK, Pathak YV, editors. Emerging Technologies for Nanoparticle Manufacturing. Cham: Springer International Publishing; 2021. p. 3-23.
3. Mousavi SM, Hashemi SA, Mazraedoost S, Chiang W-H, Yousefi K, Arjmand O, et al. Anticancer, antimicrobial and biomedical features of polyoxometalate as advanced materials: A review study. Inorganic Chemistry Communications. 2022;146:110074.
4. Joudeh N, Linke D. Nanoparticle classification, physicochemical properties, characterization, and applications: a comprehensive review for biologists. Journal of Nanobiotechnology. 2022;20(1):262.
5. Mousavi SM, Nezhad FF, Ghahramani Y, Binazadeh M, Javidi Z, Azhdari R, et al. Recent Advances in Bioactive Carbon Nanotubes Based on Polymer Composites for Biosensor Applications. Chem Biodivers. 2024;21(7):e202301288. Epub 2024/05/03. doi: 10.1002/cbdv.202301288. PubMed PMID: 38697942.
6. Njuguna J, Ansari F, Sachse S, Rodriguez VM, Siqqique S, Zhu H. 1 - Nanomaterials, nanofillers, and nanocomposites: types and properties. In: Njuguna J, Pielichowski K, Zhu H, editors. Health and Environmental Safety of Nanomaterials (Second Edition): Woodhead Publishing; 2021. p. 3-37.
7. Vatta P, Kaur M, Kaur R. Nanomaterials in Chemistry: A Review Article. Int J All Res Educ Sci Meth. 2021;9(3):82-6.
8. Rizwan M, Shoukat A, Ayub A, Razzaq B, Tahir MB. Chapter 3 - Types and classification of nanomaterials. In: Tahir MB, Sagir M, Asiri AM, editors. Nanomaterials: Synthesis, Characterization, Hazards and Safety: Elsevier; 2021. p. 31-54.
9. Damodharan J. Nanomaterials in medicine – An overview. Materials Today: Proceedings. 2021;37:383-5. doi: https://doi.org/10.1016/j.matpr.2020.05.380.
10. Ghahramani Y, Tabibi SS, Khan MMR, Asadi A, Mohammadi E, Khaksar E, et al. Recent advances in bioactive materials: Future perspectives and opportunities in oral cancer biosensing. Talanta. 2025;286:127494. doi: https://doi.org/10.1016/j.talanta.2024.127494.
11. Cheraghiyan M. Nanotechnology in Dentistry: Potential Applications and Future Perspectives. Journal of Oral and Dental Health Nexus. 2025;2(1):1-13.
12. Adl A, Abbaszadegan A, Gholami A, Parvizi F, Ghahramani Y. Effect of a New Imidazolium-based Silver Nanoparticle Irrigant on the Bond Strength of Epoxy Resin Sealer to Root Canal Dentine. Iran Endod J. 2019;14(2):122-5. Epub 2019/04/01. doi: 10.22037/iej.v14i2.22589. PubMed PMID: 36855446; PubMed Central PMCID: PMC9968383.
13. Mhetre HV, Kanse YK, Patil SS. Nanomaterials: Applications in Electronics. International Journal of Advanced Engineering and Nano Technology. 2021;4(6).
14. Devi N, Sahoo S, Kumar R, Singh RK. A review of the microwave-assisted synthesis of carbon nanomaterials, metal oxides/hydroxides and their composites for energy storage applications. Nanoscale. 2021;13(27):11679-711.
15. Roy A, Sharma A, Yadav S, Jule LT, Krishnaraj R. Nanomaterials for Remediation of Environmental Pollutants. Bioinorganic Chemistry and Applications. 2021;2021(1):1764647. doi: https://doi.org/10.1155/2021/1764647.
16. Bruna T, Maldonado-Bravo F, Jara P, Caro N. Silver Nanoparticles and Their Antibacterial Applications. International Journal of Molecular Sciences [Internet]. 2021; 22(13).
17. Asadi A, Rezaee M, Ghahramani Y. Sliver Nanoparticles: A Promising Strategy in Preventive Dentistry. Journal of Oral and Dental Health Nexus. 2025;2(2):24-37. doi: 10.61838/kman.jodhn.2.2.4.
18. Abbaszadegan A, Ghahramani Y, Farshad M, Sedigh-Shams M, Gholami A, Jamshidzadeh A. In Vitro Evaluation of Dynamic Viscosity, Surface Tension and Dentin Wettability of Silver Nanoparticles as an Irrigation Solution. Iran Endod J. 2019;14(1):23-7. Epub 2019/01/01. doi: 10.22037/iej.v14i1.21758. PubMed PMID: 36879595; PubMed Central PMCID: PMC9984811.
19. Bulmer JS, Kaniyoor A, Elliott JA. A Meta-Analysis of Conductive and Strong Carbon Nanotube Materials. Advanced Materials. 2021;33(36):2008432. doi: https://doi.org/10.1002/adma.202008432.
20. Bakand S, Hayes A. Toxicological Considerations, Toxicity Assessment, and Risk Management of Inhaled Nanoparticles. International Journal of Molecular Sciences [Internet]. 2016; 17(6).
21. Chávez-Hernández JA, Velarde-Salcedo AJ, Navarro-Tovar G, Gonzalez C. Safe nanomaterials: from their use, application, and disposal to regulations. Nanoscale advances. 2024;6(6):1583-610.
22. Hamers RJ. Nanomaterials and global sustainability. Accounts of chemical research. 2017;50(3):633-7.
23. Asadi A, Rezaee M, Ghahramani Y. Biomimetic nanomaterials in regenerative oral medicine, A minireview. Journal of Oral and Dental Health Nexus. 2024;1(1):70-5. doi: 10.61838/kman.jodhn.1.1.7.
24. Cheng X, Xie Q, Sun Y. Advances in nanomaterial-based targeted drug delivery systems. Frontiers in Bioengineering and Biotechnology. 2023;Volume 11 - 2023.
25. Chaudhary R. Applications of Nanomaterials in Electronics. Nanomaterials_ Introduction and Applications.128.
26. Malik S, Muhammad K, Waheed Y. Nanotechnology: A Revolution in Modern Industry. Molecules [Internet]. 2023; 28(2).
27. Aflori M. Smart Nanomaterials for Biomedical Applications—A Review. Nanomaterials [Internet]. 2021; 11(2).
28. Yoshida M, Lahann J. Smart Nanomaterials. ACS Nano. 2008;2(6):1101-7. doi: 10.1021/nn800332g.
29. Mandal M, Halim Z. Application of Smart. Smart Polymeric Nanocomposites: Synthesis and Applications. 2025:74.
30. Yu K, Zhang Q, Dai Z, Zhu M, Xiao L, Zhao Z, et al. Smart Dental Materials Intelligently Responding to Oral pH to Combat Caries: A Literature Review. Polymers [Internet]. 2023; 15(12).
31. Ghahramani Y, Yaghoobi F, Motamedi R, Jamshidzadeh A, Abbaszadegan A. Effect of Endodontic Irrigants and Medicaments Mixed with Silver Nanoparticles against Biofilm Formation of Enterococcus faecalis. Iran Endod J. 2018;13(4):559-64. Epub 2018/10/01. doi: 10.22037/iej.v13i4.21843. PubMed PMID: 36883019; PubMed Central PMCID: PMC9985693.
32. Raza A, Sime FB, Cabot PJ, Maqbool F, Roberts JA, Falconer JR. Solid nanoparticles for oral antimicrobial drug delivery: a review. Drug Discovery Today. 2019;24(3):858-66. doi: https://doi.org/10.1016/j.drudis.2019.01.004.
33. Xu K, Huang R, Li X, Jin L, Ko C-N, Li M, et al. Nanomaterial-based synergistic strategies for combating dental caries: progress and perspectives. Nanoscale. 2025.
34. Panahi O. Smart Materials and Sensors: Integrating Technology into Dental Restorations for Real-Time Monitoring. Journal of Dentistry and Oral Health.2(1).
35. Subramani K, Elhissi A, Subbiah U, Ahmed W. Chapter 1 - Introduction to nanotechnology. In: Subramani K, Ahmed W, editors. Nanobiomaterials in Clinical Dentistry (Second Edition): Elsevier; 2019. p. 3-18.
36. Jafernik K, Ładniak A, Blicharska E, Czarnek K, Ekiert H, Wiącek AE, et al. Chitosan-Based Nanoparticles as Effective Drug Delivery Systems—A review. Molecules [Internet]. 2023; 28(4).
37. Priyadarshini BM, Mitali K, Lu TB, Handral HK, Dubey N, Fawzy AS. PLGA nanoparticles as chlorhexidine-delivery carrier to resin-dentin adhesive interface. Dental Materials. 2017;33(7):830-46. doi: https://doi.org/10.1016/j.dental.2017.04.015.
38. Kamaly N, Yameen B, Wu J, Farokhzad OC. Degradable Controlled-Release Polymers and Polymeric Nanoparticles: Mechanisms of Controlling Drug Release. Chemical Reviews. 2016;116(4):2602-63. doi: 10.1021/acs.chemrev.5b00346.
39. Asadi A, Rezaei M, Mohammadi E, Khaksar E, Khaksar E, Abbasi F, et al. Emerging Trends in Natural Polymers for Dental Regeneration.
40. Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM, et al. Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism. Nano-Micro Letters. 2015;7(3):219-42. doi: 10.1007/s40820-015-0040-x.
41. Das S, Swain S, Rautray TR, Kennedy JV. Metals for Smart Drug Delivery. Smart Micro-and Nanomaterials for Drug Delivery: CRC Press. p. 74-95.
42. Basha SK, Dhandayuthabani R, Muzammil MS, Kumari VS. Solid lipid nanoparticles for oral drug delivery. Materials Today: Proceedings. 2021;36:313-24. doi: https://doi.org/10.1016/j.matpr.2020.04.109.
43. Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T. Quantum dots versus organic dyes as fluorescent labels. Nature Methods. 2008;5(9):763-75. doi: 10.1038/nmeth.1248.
44. Castro-Rojas MA, Vega-Cantu YI, Cordell GA, Rodriguez-Garcia A. Dental Applications of Carbon Nanotubes. Molecules [Internet]. 2021; 26(15).
45. Vasluianu R-I, Dima AM, Bobu L, Murariu A, Stamatin O, Baciu E-R, et al. Dentistry Insights: Single-Walled and Multi-Walled Carbon Nanotubes, Carbon Dots, and the Rise of Hybrid Materials. Journal of Functional Biomaterials [Internet]. 2025; 16(3).
46. Li M, Lv J, Yang Y, Cheng G, Guo S, Liu C, et al. Advances of Hydrogel Therapy in Periodontal Regeneration—A Materials Perspective Review. Gels [Internet]. 2022; 8(10).
47. Funda G, Taschieri S, Bruno GA, Grecchi E, Paolo S, Girolamo D, et al. Nanotechnology Scaffolds for Alveolar Bone Regeneration. Materials [Internet]. 2020; 13(1).
48. Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nature Materials. 2013;12(11):991-1003. doi: 10.1038/nmat3776.
49. Shang R, Kaisarly D, Kunzelmann K-H. Tooth whitening with an experimental toothpaste containing hydroxyapatite nanoparticles. BMC oral health. 2022;22(1):331.
50. Ionescu AC, Degli Esposti L, Iafisco M, Brambilla E. Dental tissue remineralization by bioactive calcium phosphate nanoparticles formulations. Scientific Reports. 2022;12(1):5994. doi: 10.1038/s41598-022-09787-5.
51. Oliveira AFB, Sousa EBG, Fernandes NLS, Meira IA, Lavôr JR, Chaves AMBP, et al. Effect of treatment time on performance of nano-encapsulated fluoride dentifrices for remineralization of initial carious lesions: an in vitro study. Acta Odontológica Latinoamericana. 2021;34(1):56-62.
52. Du H, Wang Z, Long S, Li Y, Yang D. The advancement of nanosystems for drug delivery in the prevention and treatment of dental caries. Frontiers in Cellular and Infection Microbiology. 2025;Volume 15 - 2025.
53. Cheng X, Pei X, Xie W, Chen J, Li Y, Wang J, et al. pH‐triggered size‐tunable silver nanoparticles: targeted aggregation for effective bacterial infection therapy. Small. 2022;18(22):2200915.
54. Wei T, Yu Q, Chen H. Responsive and synergistic antibacterial coatings: fighting against bacteria in a smart and effective way. Advanced healthcare materials. 2019;8(3):1801381.
55. Vasiliu S, Racovita S, Gugoasa IA, Lungan M-A, Popa M, Desbrieres J. The Benefits of Smart Nanoparticles in Dental Applications. International Journal of Molecular Sciences [Internet]. 2021; 22(5).
56. Wang Z, Yu F, Hu F. Functional Chitosan and Its Derivative-Related Drug Delivery Systems for Nano-Therapy: Recent Advances. Pharmaceutics [Internet]. 2024; 16(3).
57. Qi M, Minghan C, Xiaolin S, Xianju X, D. WM, W. OT, et al. Novel nanomaterial-based antibacterial photodynamic therapies to combat oral bacterial biofilms and infectious diseases. International Journal of Nanomedicine. 2019;14(null):6937-56. doi: 10.2147/IJN.S212807.
58. Karimi Y, Rashidipour M, Iranzadasl M, Ahmadi MH, Sarabi MM, Farzaneh F. Biofilm targeting with chitosan-based nanohydrogel containing Quercus infectoria G. Olivier extract against Streptococcus mutans: new formulations of a traditional natural product. BMC Complementary Medicine and Therapies. 2024;24(1):398. doi: 10.1186/s12906-024-04696-8.
59. Dewan M, Shrivastava D, Goyal L, Zwiri A, Hussein AF, Alam MK, et al. Recent Advancements and Applications of Nanosensors in Oral Health: Revolutionizing Diagnosis and Treatment. Eur J Dent. 2024;19(02):286-97. doi: 10.1055/s-0044-1792010.
60. Checker S, Ramanan C. Applications of Nanotechnology in Dentistry and Cosmetic Industry. Nanoelectronics Devices: Design, Materials, and Applications-Part II: Bentham Science Publishers; 2023. p. 189-220.
61. Palanisamy S. Innovations in oral hygiene tools: a mini review on recent developments. Frontiers in Dental Medicine. 2024;Volume 5 - 2024.
62. Besinis A, Tracy DP, and Handy RD. Inhibition of biofilm formation and antibacterial properties of a silver nano-coating on human dentine. Nanotoxicology. 2014;8(7):745-54. doi: 10.3109/17435390.2013.825343.
63. Zhao L, Chu PK, Zhang Y, Wu Z. Antibacterial coatings on titanium implants. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 2009;91B(1):470-80. doi: https://doi.org/10.1002/jbm.b.31463.
64. Han W, Fang S, Zhong Q, Qi S. Influence of Dental Implant Surface Modifications on Osseointegration and Biofilm Attachment. Coatings [Internet]. 2022; 12(11).
65. Raphel J, Holodniy M, Goodman SB, Heilshorn SC. Multifunctional coatings to simultaneously promote osseointegration and prevent infection of orthopaedic implants. Biomaterials. 2016;84:301-14. doi: https://doi.org/10.1016/j.biomaterials.2016.01.016.
66. Wang M, Yan T, Gao M, Han C, Yan Z, Gao Y, et al. A review of the advances in implant technology: accomplishments and challenges for the design of functionalized surface structures. Biomedical Materials. 2025.
67. Hakim LK, Yari A, Nikparto N, Mehraban SH, Cheperli S, Asadi A, et al. The current applications of nano and biomaterials in drug delivery of dental implant. BMC Oral Health. 2024;24(1):126. doi: 10.1186/s12903-024-03911-9.
68. Shi Q, Qian Z, Liu D, Liu H. Surface Modification of Dental Titanium Implant by Layer-by-Layer Electrostatic Self-Assembly. Frontiers in Physiology. 2017;Volume 8 - 2017.
69. Hasani-Sadrabadi MM, Pouraghaei S, Zahedi E, Sarrion P, Ishijima M, Dashtimoghadam E, et al. Antibacterial and osteoinductive implant surface using layer-by-layer assembly. Journal of Dental Research. 2021;100(10):1161-8.
70. Gao X, Li Y, Li J, Xiang X, Wu J, Zeng S. Stimuli-responsive materials in oral diseases: a review. Clinical Oral Investigations. 2024;28(9):497. doi: 10.1007/s00784-024-05884-z.
71. Zhang Y, Gulati K, Li Z, Di P, Liu Y. Dental Implant Nano-Engineering: Advances, Limitations and Future Directions. Nanomaterials [Internet]. 2021; 11(10).
72. Chen J, Gai K, He Y, Xu Y, Guo W. Generating bioactive and antiseptic interfaces with nano-silver hydroxyapatite-based coatings by pulsed electrochemical deposition for long-term efficient cervical soft tissue sealing. Journal of Materials Chemistry B. 2023;11(2):345-58. doi: 10.1039/D2TB02098J.
73. Sohail S, Sadiq R, Tasleem F, Kumar N, Imtiaz A, Zeeshan M, et al. The Role of Nanomaterials in Preventive Dentistry: Antimicrobial Coatings for Dental Restorations: Nanomaterials in Preventive Dentistry: Antimicrobial Coatings. Pakistan Journal of Health Sciences. 2024;5(11):253-61. doi: 10.54393/pjhs.v5i11.2366.
74. Roshan ME. An overview of the application of nanotechnology (nanoparticles) in the treatment of dental caries and control of oral infections. Insights Clin Med Images Rev. 2023:1-10.
75. Hannig M, Hannig C. Nanomaterials in preventive dentistry. Nature Nanotechnology. 2010;5(8):565-9. doi: 10.1038/nnano.2010.83.
76. Singh S, Meena VK, Sharma M, Singh H. Preparation and coating of nano-ceramic on orthopaedic implant material using electrostatic spray deposition. Materials & Design. 2015;88:278-86. doi: https://doi.org/10.1016/j.matdes.2015.08.145.
77. Guo L, Chen X, Liu X, Feng W, Li B, Lin C, et al. Surface modifications and Nano-composite coatings to improve the bonding strength of titanium-porcelain. Materials Science and Engineering: C. 2016;61:143-8. doi: https://doi.org/10.1016/j.msec.2015.12.030.
78. Wang X, Yan L, Ye T, Cheng R, Tian J, Ma C, et al. Osteogenic and antiseptic nanocoating by in situ chitosan regulated electrochemical deposition for promoting osseointegration. Materials Science and Engineering: C. 2019;102:415-26. doi: https://doi.org/10.1016/j.msec.2019.04.060.
79. Balaure PC, Grumezescu AM. Recent Advances in Surface Nanoengineering for Biofilm Prevention and Control. Part II: Active, Combined Active and Passive, and Smart Bacteria-Responsive Antibiofilm Nanocoatings. Nanomaterials [Internet]. 2020; 10(8).
80. Butler J, Handy RD, Upton M, Besinis A. Review of Antimicrobial Nanocoatings in Medicine and Dentistry: Mechanisms of Action, Biocompatibility Performance, Safety, and Benefits Compared to Antibiotics. ACS Nano. 2023;17(8):7064-92. doi: 10.1021/acsnano.2c12488.
81. Anil A, Ibraheem WI, Meshni AA, Preethanath RS, Anil S. Nano-hydroxyapatite (nHAp) in the remineralization of early dental caries: a scoping review. International journal of environmental research and public health. 2022;19(9):5629.
82. O’Hagan-Wong K, Enax J, Meyer F, Ganss B. The use of hydroxyapatite toothpaste to prevent dental caries. Odontology. 2022;110(2):223-30. doi: 10.1007/s10266-021-00675-4.
83. Bordea IR, Sebastian C, Teodora AG, Simion B, Mihaela B, Grigore B, et al. Nano-hydroxyapatite use in dentistry: a systematic review. Drug Metabolism Reviews. 2020;52(2):319-32. doi: 10.1080/03602532.2020.1758713.
84. Cochrane NJ, Cai F, Huq NL, Burrow MF, Reynolds EC. New Approaches to Enhanced Remineralization of Tooth Enamel. Journal of Dental Research. 2010;89(11):1187-97. doi: 10.1177/0022034510376046.
85. Pepla E, Besharat LK, Palaia G, Tenore G, Migliau G. Nano-hydroxyapatite and its applications in preventive, restorative and regenerative dentistry: a review of literature. Annali di stomatologia. 2014;5(3):108.
86. Damiri F, Fatimi A, Magdalena Musuc A, Paiva Santos AC, Paszkiewicz S, Igwe Idumah C, et al. Nano-hydroxyapatite (nHAp) scaffolds for bone regeneration: Preparation, characterization and biological applications. Journal of Drug Delivery Science and Technology. 2024;95:105601. doi: https://doi.org/10.1016/j.jddst.2024.105601.
87. Kantharia N, Naik S, Apte S, Kheur M, Kheur S, Kale B. Nano-hydroxyapatite and its contemporary applications. Bone. 2014;34(15.2):1-71.
88. Juntavee A, Juntavee N, Hirunmoon P. Remineralization Potential of Nanohydroxyapatite Toothpaste Compared with Tricalcium Phosphate and Fluoride Toothpaste on Artificial Carious Lesions. International Journal of Dentistry. 2021;2021(1):5588832. doi: https://doi.org/10.1155/2021/5588832.
89. Udeh CU, Amaechi BT, Abdul-Azees PA, Obiefuna AC, Lin C-Y, IftiKhar N, et al. Influence of nanohydroxyapatite mouthwash on the growth of Candida albicans biofilm on milled denture surfaces: An in vitro study. Journal of Prosthodontics. 2024;n/a(n/a). doi: https://doi.org/10.1111/jopr.13965.
90. Kirihara M, Inoue G, Nikaido T, Ikeda M, Sadr A, Tagami J. Effect of fluoride concentration in adhesives on morphology of acid-base resistant zones. Dental Materials Journal. 2013;32(4):578-84. doi: 10.4012/dmj.2013-041.
91. Moazzami F, Ghahramani Y, Tamaddon AM, Dehghani Nazhavani A, Adl A. A histological comparison of a new pulp capping material and mineral trioxide aggregate in rat molars. Iran Endod J. 2014;9(1):50-5. Epub 2014/01/08. PubMed PMID: 24396376; PubMed Central PMCID: PMC3881302.
92. Pourali G, Kazemi D, Pourali R, Rahmani N, Razzaghi E, Maftooh M, et al. Bioactive Peptides: Potential Impact on the Treatment of Gastrointestinal Cancers. Current Pharmaceutical Design. 2023;29(31):2450-60.
93. Wierichs RJ, Wolf TG, Campus G, Carvalho TS. Efficacy of nano-hydroxyapatite on caries prevention—a systematic review and meta-analysis. Clinical Oral Investigations. 2022;26(4):3373-81. doi: 10.1007/s00784-022-04390-4.
94. Roveri N, and Iafisco M. Evolving application of biomimetic nanostructured hydroxyapatite. Nanotechnology, Science and Applications. 2010;3(null):107-25. doi: 10.2147/NSA.S9038.
95. Huang S, Gao S, Cheng L, Yu H. Remineralization Potential of Nano-Hydroxyapatite on Initial Enamel Lesions: An in vitro Study. Caries Research. 2011;45(5):460-8. doi: 10.1159/000331207.
96. Mishra M, Maurya R, Yadav M. Advancements in Nano-Drug Delivery Systems for Effective Management of Periodontitis: A Comprehensive Review. Biological Sciences. 2024;4(4):810-9.
97. Mousavi SM, Hashemi SA, Fallahi Nezhad F, Binazadeh M, Dehdashtijahromi M, Omidifar N, et al. Innovative Metal-Organic Frameworks for Targeted Oral Cancer Therapy: A Review. Materials (Basel). 2023;16(13). Epub 2023/07/14. doi: 10.3390/ma16134685. PubMed PMID: 37444999; PubMed Central PMCID: PMC10342828.
98. Mlachkova A, Dosseva-Panova V, Maynalovska H, Pashova-Tasseva Z. Nanoparticles as Strategies for Modulating the Host’s Response in Periodontitis Treatment. Nanomaterials [Internet]. 2025; 15(7).
99. Makvandi P, Josic U, Delfi M, Pinelli F, Jahed V, Kaya E, et al. Drug delivery (nano) platforms for oral and dental applications: tissue regeneration, infection control, and cancer management. Advanced Science. 2021;8(8):2004014.
100. Tahmasebi E, Ardestani AK, Hassani Z, Alam M, Abbasi K, Kahrizi S, et al. The current novel drug delivery system (natural and chemical composites) in dental infections for antibiotics resistance: a narrative review. Cellular and Molecular Biology. 2022;68(10):141-60.
101. Basudan AM. Nanoparticle based periodontal drug delivery–a review on current trends and future perspectives. The Saudi dental journal. 2022;34(8):669-80.
102. Amato M, Santonocito S, Polizzi A, Tartaglia GM, Ronsivalle V, Viglianisi G, et al. Local Delivery and Controlled Release Drugs Systems: A New Approach for the Clinical Treatment of Periodontitis Therapy. Pharmaceutics [Internet]. 2023; 15(4).
103. He Y, Vasilev K, Zilm P. pH-Responsive Biomaterials for the Treatment of Dental Caries—A Focussed and Critical Review. Pharmaceutics [Internet]. 2023; 15(7).
104. Qi Y, Yang J, Chi Y, Wen P, Wang Z, Yu S, et al. Natural polyphenol self-assembled pH-responsive nanoparticles loaded into reversible hydrogel to inhibit oral bacterial activity. Molecular Biomedicine. 2022;3(1):28. doi: 10.1186/s43556-022-00082-3.
105. Wan Z, Zhang P, Lv L, Zhou Y. NIR light-assisted phototherapies for bone-related diseases and bone tissue regeneration: A systematic review. Theranostics. 2020;10(25):11837.
106. Bottino MC, Pankajakshan D, Nör JE. Advanced scaffolds for dental pulp and periodontal regeneration. Dental Clinics of North America. 2017;61(4):689.
107. Cheng L, Ke Z, D. WM, S. MMA, Xuedong Z, and Xu HHK. Nanotechnology Strategies for Antibacterial and Remineralizing Composites and Adhesives to Tackle Dental Caries. Nanomedicine. 2015;10(4):627-41. doi: 10.2217/nnm.14.191.
108. Allaker RP, and Ian Douglas CW. Non-conventional therapeutics for oral infections. Virulence. 2015;6(3):196-207. doi: 10.4161/21505594.2014.983783.
109. Calciolari E, Ercal P, Dourou M, Akcali A, Tagliaferri S, Donos N. The efficacy of adjunctive periodontal therapies during supportive periodontal care in patients with residual pockets. A systematic review and meta-analysis. Journal of Periodontal Research. 2022;57(4):671-89. doi: https://doi.org/10.1111/jre.13001.
110. Kaur H, Grover V, Malhotra R, Gupta M. Evaluation of curcumin gel as adjunct to scaling & root planing in management of periodontitis-randomized clinical & biochemical investigation. Infectious Disorders-Drug TargetsDisorders). 2019;19(2):171-8.
111. Mitragotri S, Anderson DG, Chen X, Chow EK, Ho D, Kabanov AV, et al. Accelerating the Translation of Nanomaterials in Biomedicine. ACS Nano. 2015;9(7):6644-54. doi: 10.1021/acsnano.5b03569.
112. Chaturvedi A, Gupta G, Kesharwani P, Shukla R. Revolutionizing periodontic care: Nano Dentistry's impact on inflammation management. Journal of Drug Delivery Science and Technology. 2024;99:105922. doi: https://doi.org/10.1016/j.jddst.2024.105922.
113. Singh AK, Yadav TP, Pandey B, Gupta V, Singh SP. Chapter 15 - Engineering Nanomaterials for Smart Drug Release: Recent Advances and Challenges. In: Mohapatra SS, Ranjan S, Dasgupta N, Mishra RK, Thomas S, editors. Applications of Targeted Nano Drugs and Delivery Systems: Elsevier; 2019. p. 411-49.
114. Hulme J. Application of Nanomaterials in the Prevention, Detection, and Treatment of Methicillin-Resistant Staphylococcus aureus (MRSA). Pharmaceutics [Internet]. 2022; 14(4).
115. Laib I, Mohammed HA, Laouini SE, Bouafia A, Abdullah MMS, Al-Lohedan HA, et al. Cutting-edge nanotherapeutics: silver nanoparticles loaded with ciprofloxacin for powerful antidiabetic, antioxidant, anti-inflammatory, and antibiotic action against resistant pathogenic bacteria. International Journal of Food Science and Technology. 2025;60(1):vvaf024. doi: 10.1093/ijfood/vvaf024.
116. Brooks BD, Brooks AE. Therapeutic strategies to combat antibiotic resistance. Advanced Drug Delivery Reviews. 2014;78:14-27. doi: https://doi.org/10.1016/j.addr.2014.10.027.
117. Rajkhowa S, Hussain SZ, Agarwal M, Zaheen A, Al-Hussain SA, Zaki MEA. Advancing Antibiotic-Resistant Microbe Combat: Nanocarrier-Based Systems in Combination Therapy Targeting Quorum Sensing. Pharmaceutics [Internet]. 2024; 16(9).
118. Wang Q, Yu Z, Qiang L, Li C, Hui L, Meng D, et al. Therapeutic Applications of Antimicrobial Silver-Based Biomaterials in Dentistry. International Journal of Nanomedicine. 2022;17(null):443-62. doi: 10.2147/IJN.S349238.
119. Fernandez CC, Sokolonski AR, Fonseca MS, Stanisic D, Araújo DB, Azevedo V, et al. Applications of Silver Nanoparticles in Dentistry: Advances and Technological Innovation. International Journal of Molecular Sciences [Internet]. 2021; 22(5).
120. Marta B, Potara M, Iliut M, Jakab E, Radu T, Imre-Lucaci F, et al. Designing chitosan–silver nanoparticles–graphene oxide nanohybrids with enhanced antibacterial activity against Staphylococcus aureus. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2015;487:113-20. doi: https://doi.org/10.1016/j.colsurfa.2015.09.046.
121. Cinteza LO, Scomoroscenco C, Voicu SN, Nistor CL, Nitu SG, Trica B, et al. Chitosan-Stabilized Ag Nanoparticles with Superior Biocompatibility and Their Synergistic Antibacterial Effect in Mixtures with Essential Oils. Nanomaterials [Internet]. 2018; 8(10).
122. Nabavizadeh M, Ghahramani Y, Abbaszadegan A, Jamshidzadeh A, Jenabi P, Makarempour A. In vivo biocompatibility of an ionic liquid-protected silver nanoparticle solution as root canal irrigant. Iranian endodontic journal. 2018;13(3):293.
123. Heydari Foroushani P, Rahmani E, Alemzadeh I, Vossoughi M, Pourmadadi M, Rahdar A, et al. Curcumin Sustained Release with a Hybrid Chitosan-Silk Fibroin Nanofiber Containing Silver Nanoparticles as a Novel Highly Efficient Antibacterial Wound Dressing. Nanomaterials [Internet]. 2022; 12(19).
124. Alven S, Buyana B, Feketshane Z, Aderibigbe BA. Electrospun Nanofibers/Nanofibrous Scaffolds Loaded with Silver Nanoparticles as Effective Antibacterial Wound Dressing Materials. Pharmaceutics [Internet]. 2021; 13(7).
125. Takallu S, Mirzaei E, Zakeri Bazmandeh A, Ghaderi Jafarbeigloo HR, Khorshidi H. Addressing Antimicrobial Properties in Guided Tissue/Bone Regeneration Membrane: Enhancing Effectiveness in Periodontitis Treatment. ACS Infectious Diseases. 2024;10(3):779-807. doi: 10.1021/acsinfecdis.3c00568.
126. Aksel H, Mahjour F, Bosaid F, Calamak S, Azim AA. Antimicrobial Activity and Biocompatibility of Antibiotic-Loaded Chitosan Hydrogels as a Potential Scaffold in Regenerative Endodontic Treatment. Journal of Endodontics. 2020;46(12):1867-75. doi: https://doi.org/10.1016/j.joen.2020.09.007.
127. Chauhan A, Sillu D, Dhiman NK, Agnihotri S. Silver-Based Nano-formulations for Treating Antibiotic-Resistant Microbial Strains. In: Kumar V, Shriram V, Shukla R, Gosavi S, editors. Nano-Strategies for Addressing Antimicrobial Resistance: Nano-Diagnostics, Nano-Carriers, and Nano-Antimicrobials. Cham: Springer International Publishing; 2022. p. 279-309.
128. Ibraheem DR, Hussein NN, Sulaiman GM, Mohammed HA, Khan RA, Al Rugaie O. Ciprofloxacin-Loaded Silver Nanoparticles as Potent Nano-Antibiotics against Resistant Pathogenic Bacteria. Nanomaterials [Internet]. 2022; 12(16).
129. Ratan ZA, Mashrur FR, Chhoan AP, Shahriar SM, Haidere MF, Runa NJ, et al. Silver Nanoparticles as Potential Antiviral Agents. Pharmaceutics [Internet]. 2021; 13(12).
130. Pourali G, Kazemi D, Chadeganipour AS, Arastonejad M, Kashani SN, Pourali R, et al. Microbiome as a biomarker and therapeutic target in pancreatic cancer. BMC microbiology. 2024;24(1):16.
131. Hajipour MJ, Fromm KM, Ashkarran AA, de Aberasturi DJ, de Larramendi IR, Rojo T, et al. Antibacterial properties of nanoparticles. Trends in biotechnology. 2012;30(10):499-511.
132. Zhang Y, Wang Y, Li Z, Yang D, Qiu X. Engineering of Near-Infrared-Activated Lignin–Polydopamine–Nanosilver Composites for Highly Efficient Sterilization. ACS Applied Bio Materials. 2022;5(9):4256-63. doi: 10.1021/acsabm.2c00474.
133. Sundberg J, Öhman J, Korytowska M, Wallström M, Kjeller G, Andersson M, et al. High-risk human papillomavirus in patients with oral leukoplakia and oral squamous cell carcinoma—A multi-centre study in Sweden, Brazil and Romania. Oral Diseases. 2021;27(2):183-92. doi: https://doi.org/10.1111/odi.13510.
134. Han Q, Lau JW, Do TC, Zhang Z, Xing B. Near-Infrared Light Brightens Bacterial Disinfection: Recent Progress and Perspectives. ACS Applied Bio Materials. 2021;4(5):3937-61. doi: 10.1021/acsabm.0c01341.
135. Rajan SS, Chandran R, Abrahamse H. Overcoming challenges in cancer treatment: Nano-enabled photodynamic therapy as a viable solution. WIREs Nanomedicine and Nanobiotechnology. 2024;16(1):e1942. doi: https://doi.org/10.1002/wnan.1942.
136. Park J, Lee Y-K, Park I-K, Hwang SR. Current Limitations and Recent Progress in Nanomedicine for Clinically Available Photodynamic Therapy. Biomedicines [Internet]. 2021; 9(1).
137. Rajan SS, Rahul C, and Abrahamse H. Advancing Photodynamic Therapy with Nano-Conjugated Hypocrellin: Mechanisms and Clinical Applications. International Journal of Nanomedicine. 2024;19(null):11023-38. doi: 10.2147/IJN.S486014.
138. Zhang Z, Xu Y, Zhu T, Sang Z, Guo X, Sun Y, et al. Hypoxia mitigation by manganese-doped carbon dots for synergistic photodynamic therapy of oral squamous cell carcinoma. Frontiers in Bioengineering and Biotechnology. 2023;Volume 11 - 2023.
139. Zhang T, Huang S, Lin H, An N, Tong R, Chen Y, et al. Enzyme and pH-responsive nanovehicles for intracellular drug release and photodynamic therapy. New Journal of Chemistry. 2017;41(6):2468-78. doi: 10.1039/C6NJ02357F.
140. Andrew L, Allison S, Brooke B, Faizah W, Srivalleesha M, editors. Real-time photodynamic therapy monitoring with ultrasound-guided photoacoustic imaging. ProcSPIE; 2024.
141. Chen T, Su L, Ge X, Zhang W, Li Q, Zhang X, et al. Dual activated NIR-II fluorescence and photoacoustic imaging-guided cancer chemo-radiotherapy using hybrid plasmonic-fluorescent assemblies. Nano Research. 2020;13(12):3268-77. doi: 10.1007/s12274-020-3000-9.
142. Hamblin MR. Upconversion in photodynamic therapy: plumbing the depths. Dalton Transactions. 2018;47(26):8571-80. doi: 10.1039/C8DT00087E.
143. Lin L, Song C, Wei Z, Zou H, Han S, Cao Z, et al. Multifunctional photodynamic/photothermal nano-agents for the treatment of oral leukoplakia. Journal of Nanobiotechnology. 2022;20(1):106. doi: 10.1186/s12951-022-01310-2.
144. Zhang W, Dai L, Wang N, Liu Y, Hao Z, He Y, et al. Dual-targeting nanomedicine achieves synergistic multimodal therapy for tumor. Cancer Nanotechnology. 2024;15(1):6. doi: 10.1186/s12645-023-00244-0.
145. Zhang G, Wang N, Sun H, Fu X, Zhai S, Cui J. Self-adjuvanting photosensitizer nanoparticles for combination photodynamic immunotherapy. Biomaterials Science. 2021;9(20):6940-9. doi: 10.1039/D1BM01139A.
146. Yuan Z, Fan G, Wu H, Liu C, Zhan Y, Qiu Y, et al. Photodynamic therapy synergizes with PD-L1 checkpoint blockade for immunotherapy of CRC by multifunctional nanoparticles. Molecular Therapy. 2021;29(10):2931-48. doi: 10.1016/j.ymthe.2021.05.017.
147. Song H, Cai Z, Li J, Xiao H, Qi R, Zheng M. Light triggered release of a triple action porphyrin-cisplatin conjugate evokes stronger immunogenic cell death for chemotherapy, photodynamic therapy and cancer immunotherapy. Journal of Nanobiotechnology. 2022;20(1):329. doi: 10.1186/s12951-022-01531-5.
148. Zhang Q, Kuang G, He S, Lu H, Cheng Y, Zhou D, et al. Photoactivatable Prodrug-Backboned Polymeric Nanoparticles for Efficient Light-Controlled Gene Delivery and Synergistic Treatment of Platinum-Resistant Ovarian Cancer. Nano Letters. 2020;20(5):3039-49. doi: 10.1021/acs.nanolett.9b04981.
149. Liu X, Lu Y, Li X, Luo L, You J. Nanoplatform-enhanced photodynamic therapy for the induction of immunogenic cell death. Journal of Controlled Release. 2024;365:1058-73. doi: https://doi.org/10.1016/j.jconrel.2023.11.058.
150. Zhang S, Wang J, Kong Z, Sun X, He Z, Sun B, et al. Emerging photodynamic nanotherapeutics for inducing immunogenic cell death and potentiating cancer immunotherapy. Biomaterials. 2022;282:121433. doi: https://doi.org/10.1016/j.biomaterials.2022.121433.
151. Wang N, Zhao Z, Xiao X, Mo L, Yao W, Yang H, et al. ROS-responsive self-activatable photosensitizing agent for photodynamic-immunotherapy of cancer. Acta Biomaterialia. 2023;164:511-21. doi: https://doi.org/10.1016/j.actbio.2023.03.038.
152. Nishikawa D, Suzuki H, Beppu S, Terada H, Sawabe M, Hanai N. Near-Infrared Photoimmunotherapy for Oropharyngeal Cancer. Cancers [Internet]. 2022; 14(22).
153. Nkune NW, Abrahamse H. Possible integration of artificial intelligence with photodynamic therapy and diagnosis: A review. Journal of Drug Delivery Science and Technology. 2024;101:106210. doi: https://doi.org/10.1016/j.jddst.2024.106210.
154. Pan Q, Tang H, Xie L, Zhu H, Wu D, Liu R, et al. Recent advances in phototherapeutic nanosystems for oral cancer. Journal of Materials Chemistry B. 2024;12(45):11560-72. doi: 10.1039/D4TB01919A.
155. Kirino I, Fujita K, Sakanoue K, Sugita R, Yamagishi K, Takeoka S, et al. Metronomic photodynamic therapy using an implantable LED device and orally administered 5-aminolevulinic acid. Scientific Reports. 2020;10(1):22017. doi: 10.1038/s41598-020-79067-7.
156. Suh H, Lee J, Ahn S-H, Song W, Li L, Lee Y-M, et al. Repeated irradiation by light-emitting diodes may impede the spontaneous progression of experimental periodontitis: a preclinical study. Journal of Periodontal & Implant Science. 2022;53(2):120.
157. Liu H, Daly L, Rudd G, Khan AP, Mallidi S, Liu Y, et al. Development and evaluation of a low-cost, portable, LED-based device for PDT treatment of early-stage oral cancer in resource-limited settings. Lasers in Surgery and Medicine. 2019;51(4):345-51. doi: https://doi.org/10.1002/lsm.23019.
158. Kinane DF, Stathopoulou PG, Papapanou PN. Periodontal diseases. Nature Reviews Disease Primers. 2017;3(1):17038. doi: 10.1038/nrdp.2017.38.
159. Shahriar SMS, Andrabi SM, Islam F, An JM, Schindler SJ, Matis MP, et al. Next-Generation 3D Scaffolds for Nano-Based Chemotherapeutics Delivery and Cancer Treatment. Pharmaceutics [Internet]. 2022; 14(12).
160. Etezadkeyhan P. Recent Advances in Regenerative Endodontics: Clinical Applications and Challenges. Journal of Oral and Dental Health Nexus. 2024;1(1):29-42.
161. Chinnaiyan SK, Arthanari S, Subramanian M. Nanoparticles in tissue engineering application and regenerative medicine. Introduction to Functional Nanomaterials: CRC Press; 2024. p. 93-119.
162. Percival KM, Paul V, Husseini GA. Recent Advancements in Bone Tissue Engineering: Integrating Smart Scaffold Technologies and Bio-Responsive Systems for Enhanced Regeneration. International Journal of Molecular Sciences [Internet]. 2024; 25(11).
163. Qu M, Jiang X, Zhou X, Wang C, Wu Q, Ren L, et al. Stimuli-Responsive Delivery of Growth Factors for Tissue Engineering. Advanced Healthcare Materials. 2020;9(7):1901714. doi: https://doi.org/10.1002/adhm.201901714.
164. Wei H, Cui J, Lin K, Xie J, Wang X. Recent advances in smart stimuli-responsive biomaterials for bone therapeutics and regeneration. Bone Research. 2022;10(1):17. doi: 10.1038/s41413-021-00180-y.
165. Fang C-H, Sun C-K, Lin Y-W, Hung M-C, Lin H-Y, Li C-H, et al. Metformin-Incorporated Gelatin/Nano-Hydroxyapatite Scaffolds Promotes Bone Regeneration in Critical Size Rat Alveolar Bone Defect Model. International Journal of Molecular Sciences [Internet]. 2022; 23(1).
166. Shao Z, Zhang X, Pi Y, Wang X, Jia Z, Zhu J, et al. Polycaprolactone electrospun mesh conjugated with an MSC affinity peptide for MSC homing in vivo. Biomaterials. 2012;33(12):3375-87. doi: https://doi.org/10.1016/j.biomaterials.2012.01.033.
167. Khan MA, Cantù E, Tonello S, Serpelloni M, Lopomo NF, Sardini E. A Review on Biomaterials for 3D Conductive Scaffolds for Stimulating and Monitoring Cellular Activities. Applied Sciences [Internet]. 2019; 9(5).
168. Abd G, Díaz RS, Gupta A, Niepa THR, Mondal K, Ramakrishna S, et al. Carbon nanomaterials-based electrically conductive scaffolds for tissue engineering applications. MedComm – Biomaterials and Applications. 2024;3(2):e76. doi: https://doi.org/10.1002/mba2.76.
169. Zhang C, Cai D, Liao P, Su J-W, Deng H, Vardhanabhuti B, et al. 4D Printing of shape-memory polymeric scaffolds for adaptive biomedical implantation. Acta Biomaterialia. 2021;122:101-10. doi: https://doi.org/10.1016/j.actbio.2020.12.042.
170. Li Y, You J, Lv H, Wang C, Zhai S, Ren S, et al. 4D-printed dual-responsive bioscaffolds for treating critical-sized irregular bone defects. Chemical Engineering Journal. 2024;489:151205. doi: https://doi.org/10.1016/j.cej.2024.151205.
171. Chen H, Song G, Xu T, Meng C, Zhang Y, Xin T, et al. Biomaterial Scaffolds for Periodontal Tissue Engineering. Journal of Functional Biomaterials [Internet]. 2024; 15(8).
172. Liu S, Yao L, Wang Y, Li Y, Jia Y, Yang Y, et al. Immunomodulatory hybrid micro-nanofiber scaffolds enhance vascular regeneration. Bioactive Materials. 2023;21:464-82. doi: https://doi.org/10.1016/j.bioactmat.2022.08.018.
173. Luo G, Zhang Y, Chen P, Wu F, Shi M, Ma Y, et al. Tailoring osteo-immunomodulatory micro-environments via a bioactive 3D PLA scaffold to potentiate regenerative healing. Colloids and Surfaces B: Biointerfaces. 2025;253:114711. doi: https://doi.org/10.1016/j.colsurfb.2025.114711.
174. Ganguly K, Luthfikasari R, Randhawa A, Dutta SD, Patil TV, Acharya R, et al. Stimuli-Mediated Macrophage Switching, Unraveling the Dynamics at the Nanoplatforms–Macrophage Interface. Advanced Healthcare Materials. 2024;13(20):2400581. doi: https://doi.org/10.1002/adhm.202400581.
175. Xing Z, Liu J, Cai J, Jiang X, Liang J, Fujio M, et al. The Application of Resolvin D1-Loaded Gelatin Methacrylate in a Rat Periodontitis Model. Pharmaceutics. 2024;17(1):16.
176. Jiang X, Liu J, Li S, Qiu Y, Wang X, He X, et al. The effect of resolvin D1 on bone regeneration in a rat calvarial defect model. Journal of Tissue Engineering and Regenerative Medicine. 2022;16(11):987-97. doi: https://doi.org/10.1002/term.3345.
177. Rabiee N, Rabiee M. Engineered Metal–Organic Frameworks for Targeted CRISPR/Cas9 Gene Editing. ACS Pharmacology & Translational Science. 2025;8(4):1028-49. doi: 10.1021/acsptsci.5c00047.
178. Dubey AK, Mostafavi E. Biomaterials-mediated CRISPR/Cas9 delivery: recent challenges and opportunities in gene therapy. Frontiers in Chemistry. 2023;Volume 11 - 2023.
179. Park S-Y, Lee J-K, Lee S-H, Kim D-S, Jung J-W, Kim JH, et al. Multifunctional vitamin D-incorporated PLGA scaffold with BMP/VEGF-overexpressed tonsil-derived MSC via CRISPR/Cas9 for bone tissue regeneration. Materials Today Bio. 2024;28:101254. doi: https://doi.org/10.1016/j.mtbio.2024.101254.
180. Zong C, Bronckaers A, Willems G, He H, Cadenas de Llano-Pérula M. Nanomaterials for Periodontal Tissue Regeneration: Progress, Challenges and Future Perspectives. Journal of Functional Biomaterials [Internet]. 2023; 14(6).
181. Woo HN, Cho YJ, Tarafder S, Lee CH. The recent advances in scaffolds for integrated periodontal regeneration. Bioactive Materials. 2021;6(10):3328-42. doi: https://doi.org/10.1016/j.bioactmat.2021.03.012.
182. Kaewmalun S. Development of nanostructured lipid carrier clove oil as anesthetic agent in white shrimp (Litopenaeus vannamei). 2020.
183. Schug SA, Saunders D, Kurowski I, Paech MJ. Neuraxial Drug Administration. CNS Drugs. 2006;20(11):917-33. doi: 10.2165/00023210-200620110-00005.
184. Moradkhani MR, Karimi A, Negahdari B. Nanotechnology application to local anaesthesia (LA). Artificial cells, nanomedicine, and biotechnology. 2018;46(2):355-60.
185. Ma H, Zhenxiang P, Bingjie L, Chunfang Z, and Liu H. Recent Research Advances in Nano-Based Drug Delivery Systems for Local Anesthetics. Drug Design, Development and Therapy. 2023;17(null):2639-55. doi: 10.2147/DDDT.S417051.
186. Li H, Tang Q, Wang Y, Li M, Wang Y, Zhu H, et al. Injectable thermosensitive lipo-hydrogels loaded with ropivacaine for prolonging local anesthesia. International Journal of Pharmaceutics. 2022;611:121291. doi: https://doi.org/10.1016/j.ijpharm.2021.121291.
187. Goyal AK, Rath G, Faujdar C, Malik B. Chapter 2 - Application and Perspective of pH-Responsive Nano Drug Delivery Systems. In: Mohapatra SS, Ranjan S, Dasgupta N, Mishra RK, Thomas S, editors. Applications of Targeted Nano Drugs and Delivery Systems: Elsevier; 2019. p. 15-33.
188. Qiao B, Yao J, Fan Ya, Zhang N, Feng M, Zhao J, et al. Intrinsic anti-inflammatory nanomedicines for enhanced pain management. Frontiers in Bioengineering and Biotechnology. 2024;Volume 12 - 2024.
189. Khanal M, Gohil SV, Kuyinu E, Kan H-M, Knight BE, Baumbauer KM, et al. Injectable nanocomposite analgesic delivery system for musculoskeletal pain management. Acta Biomaterialia. 2018;74:280-90. doi: https://doi.org/10.1016/j.actbio.2018.05.038.
190. Shen S-J, Chou Y-C, Hsu S-C, Lin Y-T, Lu C-J, Liu S-J. Fabrication of Ropivacaine/Dexamethasone-Eluting Poly(D, L-lactide-co-glycolide) Microparticles via Electrospraying Technique for Postoperational Pain Control. Polymers [Internet]. 2022; 14(4).
191. Zhang X, Qiao K, Cui R, Xu M, Cai S, Huang Q, et al. Tetrodotoxin: The State-of-the-Art Progress in Characterization, Detection, Biosynthesis, and Transport Enrichment. Marine Drugs [Internet]. 2024; 22(12).
192. Lopes FF, de Freitas CF, de Paula E, Lourenço SA, Florian M, Cabeça LF. Hydroxyapatite-coated liposomes for the controlled release of quantum dots and bupivacaine. Journal of Materials Research. 2021;36(14):3021-30. doi: 10.1557/s43578-021-00292-5.
193. Yang H, Zhongqi L, Fan L, Haixuan W, Xiaoyan H, Rong H, et al. TET1-Lipid Nanoparticle Encapsulating Morphine for Specific Targeting of Peripheral Nerve for Pain Alleviation. International Journal of Nanomedicine. 2024;19(null):4759-77. doi: 10.2147/IJN.S453608.
194. Lieblich SE, Danesi H. Liposomal Bupivacaine Use in Third Molar Impaction Surgery: INNOVATE Study. Anesthesia Progress. 2017;64(3):127-35. doi: 10.2344/anpr-64-02-03.
195. Li T, Bao Q, Shen J, Lalla RV, Burgess DJ. Mucoadhesive in situ forming gel for oral mucositis pain control. International Journal of Pharmaceutics. 2020;580:119238. doi: https://doi.org/10.1016/j.ijpharm.2020.119238.
196. Pandey M, Choudhury H, Ying JN, Ling JF, Ting J, Ting JS, et al. Mucoadhesive Nanocarriers as a Promising Strategy to Enhance Intracellular Delivery against Oral Cavity Carcinoma. Pharmaceutics [Internet]. 2022; 14(4).
197. Shin GR, Kim HE, Kim JH, Choi S, Kim MS. Advances in Injectable In Situ-Forming Hydrogels for Intratumoral Treatment. Pharmaceutics [Internet]. 2021; 13(11).
198. Younis MA, Tawfeek HM, Abdellatif AAH, Abdel-Aleem JA, Harashima H. Clinical translation of nanomedicines: Challenges, opportunities, and keys. Advanced Drug Delivery Reviews. 2022;181:114083. doi: https://doi.org/10.1016/j.addr.2021.114083.
199. Nabavizadeh MR, Moazzami F, Gholami A, Mehrabi V, Ghahramani Y. Cytotoxic Effect of Nano Fast Cement and ProRoot Mineral Trioxide Aggregate on L-929 Fibroblast Cells: an in vitro Study. J Dent (Shiraz). 2022;23(1):13-9. Epub 2022/03/17. doi: 10.30476/dentjods.2021.87208.1239. PubMed PMID: 35291684; PubMed Central PMCID: PMC8918640.
200. Shid-Moosavi TS, Mohammadi N, Gharamani Y, Motamedifar M, Alizadeh AA. Evaluating antimicrobial activity and cytotoxicity of silver nanoparticles incorporated into reinforced zinc oxide eugenol: an in vitro study. European Archives of Paediatric Dentistry. 2024;25(3):443-50.
201. Cierech M, Wojnarowicz J, Kolenda A, Krawczyk-Balska A, Prochwicz E, Woźniak B, et al. Zinc oxide nanoparticles cytotoxicity and release from newly formed PMMA–ZnO nanocomposites designed for denture bases. Nanomaterials. 2019;9(9):1318.
202. Bourgi R, Doumandji Z, Cuevas-Suárez CE, Ben Ammar T, Laporte C, Kharouf N, et al. Exploring the Role of Nanoparticles in Dental Materials: A Comprehensive Review. Coatings [Internet]. 2025; 15(1).
203. Jandt KD, Watts DC. Nanotechnology in dentistry: Present and future perspectives on dental nanomaterials. Dental Materials. 2020;36(11):1365-78. doi: https://doi.org/10.1016/j.dental.2020.08.006.
204. Shashirekha G, Jena A, Mohapatra S. Nanotechnology in dentistry: Clinical applications, benefits, and hazards. Compendium of continuing education in dentistry (Jamesburg, NJ: 1995). 2017;38(5):e1-e4.
205. Moazami F, Gholami A, Mehrabi V, Ghahramani Y. Evaluation of the Antibacterial and Antifungal Effects of ProRoot MTA and Nano-fast Cement: An In Vitro Study. J Contemp Dent Pract. 2020;21(7):760-4. Epub 2020/10/07. PubMed PMID: 33020359.
206. Belibasakis GN, Bostanci N, Marsh PD, Zaura E. Applications of the oral microbiome in personalized dentistry. Archives of Oral Biology. 2019;104:7-12. doi: https://doi.org/10.1016/j.archoralbio.2019.05.023.
207. Abou Neel EA, Laurent B, A. PR, Hae-Won K, and Knowles JC. Nanotechnology in dentistry: prevention, diagnosis, and therapy. International Journal of Nanomedicine. 2015;10(null):6371-94. doi: 10.2147/IJN.S86033.
208. Bonilla-Represa V, Abalos-Labruzzi C, Herrera-Martinez M, Guerrero-Pérez MO. Nanomaterials in Dentistry: State of the Art and Future Challenges. Nanomaterials [Internet]. 2020; 10(9).
209. Natarajan D, Ye Z, Wang L, Ge L, Pathak JL. Rare earth smart nanomaterials for bone tissue engineering and implantology: Advances, challenges, and prospects. Bioengineering & Translational Medicine. 2022;7(1):e10262. doi: https://doi.org/10.1002/btm2.10262.
210. Asadi A, Khaksar E, Hosseinpoor S, Abbasi R, Ghahramani Y. Aluminum Nanoparticles, a New Approach in Sustainable Chemistry and Usage in Medicine. Advances in Applied Nano-Bio Technologies. 2025 Jun 30:79-91.
211. Khaksar E, Asadi A, Rezaei M, Abbasi F, Ghahramani Y. New Approach in bioactive materials for regeneration dental application. Advances in Applied Nano-Bio Technologies. 2025 Mar 20:46-60.
212. Asadi A, Khaksar E, Valanik S, Ghahramani Y. New Methods of Preparing Calcium Nanomaterials as a Keystone in Biotechnology. Advances in Applied Nano-Bio Technologies. 2025 Jun 30:92-102.
Downloads
Published
Submitted
Revised
Accepted
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.