Biogenic Nanomaterials: A New Frontier in Oral Healthcare

Authors

    Negar Hajipour Orthodontic Research Center, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran.
    Fateme Zarei * Dental school, Shiraz University of Medical Sciences, Shiraz, Iran. Zareiftm.sums@gmail.com
    Razie Amiri Department of Endodontics, Dental school, Tehran University of medical sciences, Tehran, Iran.
https://doi.org/10.61838/kman.jodhn.2.3.2

Keywords:

Biogenic nanoparticles, Sustainable synthesis, Oral therapeutics, Antimicrobial nanomaterials, Eco-conscious dentistry

Abstract

Eco-friendly synthesis techniques have enabled the production of biocompatible nanomaterials through natural sources such as microorganisms, algae, and agricultural byproducts. These biologically derived nanoparticles exhibit excellent antimicrobial, anti-inflammatory, and regenerative properties, making them highly suitable for dental and oral health interventions. Metallic nanostructures, including silver, gold, and zinc oxide, show significant efficacy against common oral pathogens and can be incorporated into composites, coatings, and therapeutic systems. Their ability to enhance targeted drug delivery and reduce toxicity supports their application in diagnostics, restorations, and soft tissue healing. This sustainable approach offers a safer, more responsible alternative to conventional fabrication methods in dental care.

Downloads

Download data is not yet available.

References

1. Sajid M. Nanomaterials: types, properties, recent advances, and toxicity concerns. Current Opinion in Environmental Science & Health. 2022;25:100319. doi: https://doi.org/10.1016/j.coesh.2021.100319.

2. Pomerantseva E, Bonaccorso F, Feng X, Cui Y, Gogotsi Y. Energy storage: The future enabled by nanomaterials. Science. 2019;366(6468):eaan8285. doi: 10.1126/science.aan8285.

3. Malik S, Muhammad K, Waheed Y. Nanotechnology: A Revolution in Modern Industry. Molecules [Internet]. 2023; 28(2).

4. Asadi A, Rezaee M, Ghahramani Y. Biomimetic nanomaterials in regenerative oral medicine, A minireview. Journal of Oral and Dental Health Nexus. 2024;1(1):70-5. doi: 10.61838/kman.jodhn.1.1.7.

5. Mousavi SM, Hashemi SA, Mazraedoost S, Chiang W-H, Yousefi K, Arjmand O, et al. Anticancer, antimicrobial and biomedical features of polyoxometalate as advanced materials: A review study. Inorganic Chemistry Communications. 2022;146:110074.

6. Del Prado-Audelo ML, García Kerdan I, Escutia-Guadarrama L, Reyna-González JM, Magaña JJ, Leyva-Gómez G. Nanoremediation: Nanomaterials and Nanotechnologies for Environmental Cleanup. Frontiers in Environmental Science. 2021;Volume 9 - 2021.

7. Mousavi SM, Nezhad FF, Ghahramani Y, Binazadeh M, Javidi Z, Azhdari R, et al. Recent Advances in Bioactive Carbon Nanotubes Based on Polymer Composites for Biosensor Applications. Chem Biodivers. 2024;21(7):e202301288. Epub 2024/05/03. doi: 10.1002/cbdv.202301288. PubMed PMID: 38697942.

8. Komeily-Nia Z, Montazer M, Heidarian P, Nasri-Nasrabadi B. Smart photoactive soft materials for environmental cleaning and energy production through incorporation of nanophotocatalyst on polymers and textiles. Polymers for Advanced Technologies. 2019;30(2):235-53. doi: https://doi.org/10.1002/pat.4480.

9. Sohail MI, Waris AA, Ayub MA, Usman M, Zia ur Rehman M, Sabir M, et al. Chapter One - Environmental application of nanomaterials: A promise to sustainable future. In: Verma SK, Das AK, editors. Comprehensive Analytical Chemistry. 87: Elsevier; 2019. p. 1-54.

10. Sinha A, Behera A. Chapter 8 - Nanotechnology in the space industry. In: Denizli A, Alencar MS, Nguyen TA, Motaung DE, editors. Nanotechnology-Based Smart Remote Sensing Networks for Disaster Prevention: Elsevier; 2022. p. 139-57.

11. Nabavizadeh MR, Moazzami F, Gholami A, Mehrabi V, Ghahramani Y. Cytotoxic Effect of Nano Fast Cement and ProRoot Mineral Trioxide Aggregate on L-929 Fibroblast Cells: an in vitro Study. J Dent (Shiraz). 2022;23(1):13-9. Epub 2022/03/17. doi: 10.30476/dentjods.2021.87208.1239. PubMed PMID: 35291684; PubMed Central PMCID: PMC8918640.

12. Moinudeen GK, Ahmad F, Kumar D, Al-Douri Y, Ahmad S. IoT applications in future foreseen guided by engineered nanomaterials and printed intelligence technologies a technology review. International Journal of Internet of Things. 2017;6(3):106-48.

13. Ghahramani Y, Tabibi SS, Khan MMR, Asadi A, Mohammadi E, Khaksar E, et al. Recent advances in bioactive materials: Future perspectives and opportunities in oral cancer biosensing. Talanta. 2025;286:127494. doi: https://doi.org/10.1016/j.talanta.2024.127494.

14. Madani M, Hosny S, Alshangiti DM, Nady N, Alkhursani SA, Alkhaldi H, et al. Green synthesis of nanoparticles for varied applications: Green renewable resources and energy-efficient synthetic routes. 2022;11(1):731-59. doi: doi:10.1515/ntrev-2022-0034.

15. Naseem K, Farooqi ZH, Begum R, Irfan A. Removal of Congo red dye from aqueous medium by its catalytic reduction using sodium borohydride in the presence of various inorganic nano-catalysts: A review. Journal of Cleaner Production. 2018;187:296-307. doi: https://doi.org/10.1016/j.jclepro.2018.03.209.

16. Saratale RG, Saratale GD, Shin HS, Jacob JM, Pugazhendhi A, Bhaisare M, et al. New insights on the green synthesis of metallic nanoparticles using plant and waste biomaterials: current knowledge, their agricultural and environmental applications. Environmental Science and Pollution Research. 2018;25(11):10164-83. doi: 10.1007/s11356-017-9912-6.

17. Bahrulolum H, Nooraei S, Javanshir N, Tarrahimofrad H, Mirbagheri VS, Easton AJ, et al. Green synthesis of metal nanoparticles using microorganisms and their application in the agrifood sector. Journal of Nanobiotechnology. 2021;19(1):86. doi: 10.1186/s12951-021-00834-3.

18. Álvarez-Chimal R, Arenas-Alatorre JÁ. Green Synthesis of Nanoparticles: A Biological Approach. In: Shah KJ, editor. Advances in Green Chemistry - Prevention-Assurance-Sustainability (P-A-S) Approach. Rijeka: IntechOpen; 2023.

19. Singh J, Dutta T, Kim K-H, Rawat M, Samddar P, Kumar P. ‘Green’ synthesis of metals and their oxide nanoparticles: applications for environmental remediation. Journal of Nanobiotechnology. 2018;16(1):84. doi: 10.1186/s12951-018-0408-4.

20. Asadi A, Rezaee M, Ghahramani Y. Sliver Nanoparticles: A Promising Strategy in Preventive Dentistry. Journal of Oral and Dental Health Nexus. 2025;2(2):24-37. doi: 10.61838/kman.jodhn.2.2.4.

21. Yazdanian M, Rostamzadeh P, Rahbar M, Alam M, Abbasi K, Tahmasebi E, et al. The potential application of green‐synthesized metal nanoparticles in dentistry: A comprehensive review. Bioinorganic Chemistry and Applications. 2022;2022(1):2311910.

22. Ramasubburayan R, Ramanathan G, Vijay SS, A.P. Yolin Angel SR, Ramya JR, Thirumurugan D, et al. Harnessing green nanoparticles: Sustainable solutions for combating dental caries management. Materials Today Chemistry. 2025;45:102631. doi: https://doi.org/10.1016/j.mtchem.2025.102631.

23. Majithia M, Barretto DA. Chapter 12 - Biocompatible green-synthesized nanomaterials for therapeutic applications. In: Morajkar P, Naik M, editors. Advances in Nano and Biochemistry: Academic Press; 2023. p. 285-367.

24. Szczyglewska P, Feliczak-Guzik A, Nowak I. Nanotechnology–General Aspects: A Chemical Reduction Approach to the Synthesis of Nanoparticles. Molecules [Internet]. 2023; 28(13).

25. Jain K, Takuli A, Gupta TK, Gupta D. Rethinking Nanoparticle Synthesis: A Sustainable Approach vs. Traditional Methods. Chemistry – An Asian Journal. 2024;19(21):e202400701. doi: https://doi.org/10.1002/asia.202400701.

26. Panwar MS, Pal P, Joshi D. Advances in Green Synthesis of Silver Nanoparticles: Sustainable Approaches and Applications. Journal of Drug Delivery & Therapeutics. 2024;14(11).

27. Wang M, Yue M, Huifeng Z, Yong H, Chang-Peng X, Xiaomin C, et al. Green Synthesized Gold Nanoparticles Using Viola betonicifolia Leaves Extract: Characterization, Antimicrobial, Antioxidant, and Cytobiocompatible Activities. International Journal of Nanomedicine. 2021;16(null):7319-37. doi: 10.2147/IJN.S323524.

28. Alyamani AA, Albukhaty S, Aloufi S, AlMalki FA, Al-Karagoly H, Sulaiman GM. Green Fabrication of Zinc Oxide Nanoparticles Using Phlomis Leaf Extract: Characterization and In Vitro Evaluation of Cytotoxicity and Antibacterial Properties. Molecules [Internet]. 2021; 26(20).

29. Moazzami F, Ghahramani Y, Tamaddon AM, Dehghani Nazhavani A, Adl A. A histological comparison of a new pulp capping material and mineral trioxide aggregate in rat molars. Iran Endod J. 2014;9(1):50-5. Epub 2014/01/08. PubMed PMID: 24396376; PubMed Central PMCID: PMC3881302.

30. Oliveira MLS, Izquierdo M, Querol X, Lieberman RN, Saikia BK, Silva LFO. Nanoparticles from construction wastes: A problem to health and the environment. Journal of Cleaner Production. 2019;219:236-43. doi: https://doi.org/10.1016/j.jclepro.2019.02.096.

31. Gupta D, Boora A, Thakur A, Gupta TK. Green and sustainable synthesis of nanomaterials: Recent advancements and limitations. Environmental Research. 2023;231:116316. doi: https://doi.org/10.1016/j.envres.2023.116316.

32. Priya, Ashique S, Afzal O, Khalid M, Faruque Ahmad M, Upadhyay A, et al. Biogenic nanoparticles from waste fruit peels: Synthesis, applications, challenges and future perspectives. International Journal of Pharmaceutics. 2023;643:123223. doi: https://doi.org/10.1016/j.ijpharm.2023.123223.

33. Omran BA, Baek K-H. Valorization of agro-industrial biowaste to green nanomaterials for wastewater treatment: Approaching green chemistry and circular economy principles. Journal of Environmental Management. 2022;311:114806. doi: https://doi.org/10.1016/j.jenvman.2022.114806.

34. Parveen K, Banse V, Ledwani L. Green synthesis of nanoparticles: Their advantages and disadvantages. AIP Conference Proceedings. 2016;1724(1):020048. doi: 10.1063/1.4945168.

35. Hettiarachchi SS, Dunuweera SP, Dunuweera AN, Rajapakse RMG. Synthesis of Curcumin Nanoparticles from Raw Turmeric Rhizome. ACS Omega. 2021;6(12):8246-52. doi: 10.1021/acsomega.0c06314.

36. Moorthy SK, Ashok CH, Rao KV, Viswanathan C. Synthesis and Characterization of Mgo Nanoparticles by Neem Leaves through Green Method. Materials Today: Proceedings. 2015;2(9, Part A):4360-8. doi: https://doi.org/10.1016/j.matpr.2015.10.027.

37. Burange PJ, Tawar MG, Bairagi RA, Malviya VR, Sahu VK, Shewatkar SN, et al. Synthesis of silver nanoparticles by using Aloe vera and Thuja orientalis leaves extract and their biological activity: a comprehensive review. Bulletin of the National Research Centre. 2021;45(1):181. doi: 10.1186/s42269-021-00639-2.

38. Ahmed SF, Mofijur M, Rafa N, Chowdhury AT, Chowdhury S, Nahrin M, et al. Green approaches in synthesising nanomaterials for environmental nanobioremediation: Technological advancements, applications, benefits and challenges. Environmental Research. 2022;204:111967. doi: https://doi.org/10.1016/j.envres.2021.111967.

39. Morgan RN, and Aboshanab KM. Green biologically synthesized metal nanoparticles: biological applications, optimizations and future prospects. Future Science OA. 2024;10(1):FSO935. doi: 10.2144/fsoa-2023-0196.

40. Adl A, Abbaszadegan A, Gholami A, Parvizi F, Ghahramani Y. Effect of a New Imidazolium-based Silver Nanoparticle Irrigant on the Bond Strength of Epoxy Resin Sealer to Root Canal Dentine. Iran Endod J. 2019;14(2):122-5. Epub 2019/04/01. doi: 10.22037/iej.v14i2.22589. PubMed PMID: 36855446; PubMed Central PMCID: PMC9968383.

41. Ghabban H, Alnomasy SF, Almohammed H, Al Idriss OM, Rabea S, Eltahir Y. Antibacterial, Cytotoxic, and Cellular Mechanisms of Green Synthesized Silver Nanoparticles against Some Cariogenic Bacteria (Streptococcus mutans and Actinomyces viscosus). Journal of Nanomaterials. 2022;2022(1):9721736. doi: https://doi.org/10.1155/2022/9721736.

42. Liu R, Memarzadeh K, Chang B, Zhang Y, Ma Z, Allaker RP, et al. Antibacterial effect of copper-bearing titanium alloy (Ti-Cu) against Streptococcus mutans and Porphyromonas gingivalis. Scientific Reports. 2016;6(1):29985. doi: 10.1038/srep29985.

43. Rajeshkumar S, Lakshmi T, Tharani M. Green synthesis of copper nanoparticles synthesized using black tea and its antibacterial activity against oral pathogens. Int J Dent Oral Sci. 2021;8(9):4156-9.

44. Sundeep D, Vijaya Kumar T, Rao PSS, Ravikumar RVSSN, Gopala Krishna A. Green synthesis and characterization of Ag nanoparticles from Mangifera indica leaves for dental restoration and antibacterial applications. Progress in Biomaterials. 2017;6(1):57-66. doi: 10.1007/s40204-017-0067-9.

45. Kirubakaran D, Wahid JBA, Karmegam N, Jeevika R, Sellapillai L, Rajkumar M, et al. A Comprehensive Review on the Green Synthesis of Nanoparticles: Advancements in Biomedical and Environmental Applications. Biomedical Materials & Devices. 2025. doi: 10.1007/s44174-025-00295-4.

46. Samuel MS, Ravikumar M, John J A, Selvarajan E, Patel H, Chander PS, et al. A Review on Green Synthesis of Nanoparticles and Their Diverse Biomedical and Environmental Applications. Catalysts [Internet]. 2022; 12(5).

47. Moradi S, Golbashy M, Hosseini M. Sensing of Molecules by Electrocatalysis Based on Green Synthesis of Nanomaterials. Topics in Catalysis. 2025. doi: 10.1007/s11244-025-02073-4.

48. Bao Y, He J, Song K, Guo J, Zhou X, Liu S. Plant-Extract-Mediated Synthesis of Metal Nanoparticles. Journal of Chemistry. 2021;2021(1):6562687. doi: https://doi.org/10.1155/2021/6562687.

49. Kumar Singh R, Nallaswamy D, Rajeshkumar S, Varghese SS. Green synthesis of silver nanoparticles using neem and turmeric extract and its antimicrobial activity of plant mediated silver nanoparticles. Journal of Oral Biology and Craniofacial Research. 2025;15(2):395-401. doi: https://doi.org/10.1016/j.jobcr.2025.02.005.

50. Shahzadi S, Fatima S, Shafiq Z, Janjua MRSA. A review on green synthesis of silver nanoparticles (SNPs) using plant extracts: a multifaceted approach in photocatalysis, environmental remediation, and biomedicine. RSC advances. 2025;15(5):3858-903.

51. Giri VA, Sastry SVAR, Kapoor A. Biomass-assisted green synthesis and characterization of silver nanoparticles using Azadirachta indica, Ocimum basilicum, and Curcuma longa: evaluation of antifungal potential. Biomass Conversion and Biorefinery. 2023. doi: 10.1007/s13399-023-05177-7.

52. Roychoudhury A. Yeast-mediated green synthesis of nanoparticles for biological applications. Indian J Pharm Biol Res. 2020;8(03):26-31.

53. Iravani S. Bacteria in Nanoparticle Synthesis: Current Status and Future Prospects. International Scholarly Research Notices. 2014;2014(1):359316. doi: https://doi.org/10.1155/2014/359316.

54. Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, et al. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids and Surfaces B: Biointerfaces. 2003;28(4):313-8. doi: https://doi.org/10.1016/S0927-7765(02)00174-1.

55. Bayat N, Katarina R, Romana M-L, Damjana D, and Cristobal S. The effects of engineered nanoparticles on the cellular structure and growth of Saccharomyces cerevisiae. Nanotoxicology. 2014;8(4):363-73. doi: 10.3109/17435390.2013.788748.

56. Hulkoti NI, Taranath TC. Biosynthesis of nanoparticles using microbes—A review. Colloids and Surfaces B: Biointerfaces. 2014;121:474-83. doi: https://doi.org/10.1016/j.colsurfb.2014.05.027.

57. Alsaiari NS, Alzahrani FM, Amari A, Osman H, Harharah HN, Elboughdiri N, et al. Plant and microbial approaches as green methods for the synthesis of nanomaterials: synthesis, applications, and future perspectives. Molecules. 2023;28(1):463.

58. Khan F, Shahid A, Zhu H, Wang N, Javed MR, Ahmad N, et al. Prospects of algae-based green synthesis of nanoparticles for environmental applications. Chemosphere. 2022;293:133571. doi: https://doi.org/10.1016/j.chemosphere.2022.133571.

59. Alprol AE, Mansour AT, El-Beltagi HS, Ashour M. Algal extracts for green synthesis of zinc oxide nanoparticles: promising approach for algae bioremediation. Materials. 2023;16(7):2819.

60. Chaudhary R, Nawaz K, Khan AK, Hano C, Abbasi BH, Anjum S. An overview of the algae-mediated biosynthesis of nanoparticles and their biomedical applications. Biomolecules. 2020;10(11):1498.

61. Debroy A, Joshi S, Yadav M, George N. Chapter 15 - Green synthesis of nanoparticles from bio-waste for potential applications: Current trends, challenges, and prospects. In: Hussain CM, Kushwaha A, Bharagava RN, Goswami L, editors. Bio-Based Materials and Waste for Energy Generation and Resource Management. 5: Elsevier; 2023. p. 431-66.

62. Bhardwaj AK, Dwivedi K, Sillanpää M, Srivastav AL. Green and Sustainable Approaches Using Wastes for the Production of Multifunctional Nanomaterials: Elsevier; 2024.

63. Gavilán H, Serrano MB, Cabanelas JC. Nanomaterials and their synthesis for a sustainable future: Materials Research Forum LLC; 2023.

64. Kumar P, Singh J. Harnessing Bioproducts for a Sustainable Circular Economy. In: Mukherjee G, Dhiman S, editors. Value Addition and Utilization of Lignocellulosic Biomass: Through Novel Technological Interventions. Singapore: Springer Nature Singapore; 2025. p. 263-93.

65. Saxena N. Bio-nanotechnology in waste to energy conversion in a circular economy approach for better sustainability. Bionanotechnology Towards Green Energy: CRC Press; 2023. p. 253-74.

66. Sinamo S, Tarigan S, Gea S, Putra DP. Utilization of silica nanoparticles from rice husks for improving the mechanical properties of dental materials: A literature review. Bioscientia Medicina: Journal of Biomedicine and Translational Research. 2022;6(14):2644-50.

67. Aswathi VP, Meera S, Maria CGA, Nidhin M. Green synthesis of nanoparticles from biodegradable waste extracts and their applications: a critical review. Nanotechnology for Environmental Engineering. 2023;8(2):377-97. doi: 10.1007/s41204-022-00276-8.

68. Gudkov SV, Burmistrov DE, Serov DA, Rebezov MB, Semenova AA, Lisitsyn AB. Do Iron Oxide Nanoparticles Have Significant Antibacterial Properties? Antibiotics [Internet]. 2021; 10(7).

69. Kiarashi M, Mahamed P, Ghotbi N, Tadayonfard A, Nasiri K, Kazemi P, et al. Spotlight on therapeutic efficiency of green synthesis metals and their oxide nanoparticles in periodontitis. Journal of Nanobiotechnology. 2024;22(1):21. doi: 10.1186/s12951-023-02284-5.

70. Hedayatipanah M, Gholami L, Farmany A, Alikhani MY, Hooshyarfard A, Hashemiyan FS. Green synthesis of silver nanoparticles and evaluation of their effects on the Porphyromonas gingivalis bacterial biofilm formation. Clinical and Experimental Dental Research. 2024;10(3):e887. doi: https://doi.org/10.1002/cre2.887.

71. Dakal TC, Kumar A, Majumdar RS, Yadav V. Mechanistic Basis of Antimicrobial Actions of Silver Nanoparticles. Frontiers in Microbiology. 2016;Volume 7 - 2016.

72. Dash A, Ragavendran C. Innovative approaches to combating dental biofilms: Nanotechnology and its applications. Biocatalysis and Agricultural Biotechnology. 2024;61:103406. doi: https://doi.org/10.1016/j.bcab.2024.103406.

73. Balhaddad AA, Garcia IM, Mokeem L, Alsahafi R, Collares FM, Sampaio de Melo MA. Metal Oxide Nanoparticles and Nanotubes: Ultrasmall Nanostructures to Engineer Antibacterial and Improved Dental Adhesives and Composites. Bioengineering [Internet]. 2021; 8(10).

74. Thomas R, Snigdha S, Bhavitha KB, Babu S, Ajith A, Radhakrishnan EK. Biofabricated silver nanoparticles incorporated polymethyl methacrylate as a dental adhesive material with antibacterial and antibiofilm activity against Streptococcus mutans. 3 Biotech. 2018;8(9):404. doi: 10.1007/s13205-018-1420-y.

75. Pushpalatha C, Gayathri VS, Sowmya SV, Augustine D, Alamoudi A, Zidane B, et al. Nanohydroxyapatite in dentistry: A comprehensive review. The Saudi Dental Journal. 2023;35(6):741-52. doi: https://doi.org/10.1016/j.sdentj.2023.05.018.

76. Pei D, Meng Y, Li Y, Liu J, Lu Y. Influence of nano-hydroxyapatite containing desensitizing toothpastes on the sealing ability of dentinal tubules and bonding performance of self-etch adhesives. Journal of the Mechanical Behavior of Biomedical Materials. 2019;91:38-44. doi: https://doi.org/10.1016/j.jmbbm.2018.11.021.

77. Moazami F, Gholami A, Mehrabi V, Ghahramani Y. Evaluation of the Antibacterial and Antifungal Effects of ProRoot MTA and Nano-fast Cement: An In Vitro Study. J Contemp Dent Pract. 2020;21(7):760-4. Epub 2020/10/07. PubMed PMID: 33020359.

78. Ghahramani Y, Yaghoobi F, Motamedi R, Jamshidzadeh A, Abbaszadegan A. Effect of Endodontic Irrigants and Medicaments Mixed with Silver Nanoparticles against Biofilm Formation of Enterococcus faecalis. Iran Endod J. 2018;13(4):559-64. Epub 2018/10/01. doi: 10.22037/iej.v13i4.21843. PubMed PMID: 36883019; PubMed Central PMCID: PMC9985693.

79. Ezzat D, Sheta MS, Kenawy E-R, Eid MA, Elkafrawy H. Synthesis, characterization and evaluation of experimental dental composite resin modified by grapefruit seed extract-mediated TiO₂ nanoparticles: green approach. Odontology. 2025. doi: 10.1007/s10266-025-01058-9.

80. Shirmohammadi A, Maleki Dizaj S, Sharifi S, Fattahi S, Negahdari R, Ghavimi MA, et al. Promising Antimicrobial Action of Sustained Released Curcumin-Loaded Silica Nanoparticles against Clinically Isolated Porphyromonas gingivalis. Diseases [Internet]. 2023; 11(1).

81. Trigo-Gutierrez JK, Vega-Chacón Y, Soares AB, Mima EG. Antimicrobial Activity of Curcumin in Nanoformulations: A Comprehensive Review. International Journal of Molecular Sciences [Internet]. 2021; 22(13).

82. Saravanakumar K, Chelliah R, MubarakAli D, Jeevithan E, Oh D-H, Kathiresan K, et al. Fungal enzyme-mediated synthesis of chitosan nanoparticles and its biocompatibility, antioxidant and bactericidal properties. International Journal of Biological Macromolecules. 2018;118:1542-9. doi: https://doi.org/10.1016/j.ijbiomac.2018.06.198.

83. Gamil Y, Hamed MG, Elsayed M, Essawy A, Medhat S, Zayed SO, et al. The anti-fungal effect of miconazole and miconazole-loaded chitosan nanoparticles gels in diabetic patients with Oral candidiasis-randomized control clinical trial and microbiological analysis. BMC Oral Health. 2024;24(1):196. doi: 10.1186/s12903-024-03952-0.

84. Sangboonruang S, Semakul N, Suriyaprom S, Kitidee K, Khantipongse J, Intorasoot S, et al. Nano-Delivery System of Ethanolic Extract of Propolis Targeting Mycobacterium tuberculosis via Aptamer-Modified-Niosomes. Nanomaterials [Internet]. 2023; 13(2).

85. Islam S, Hussain EA, Shujaat S, Rasheed MA. Green synthesis of propolis mediated silver nanoparticles with antioxidant, antibacterial, anti-inflammatory properties and their burn wound healing efficacy in animal model. Biomedical Physics & Engineering Express. 2024;11(1):015050.

86. Mousavi SM, Hashemi SA, Fallahi Nezhad F, Binazadeh M, Dehdashtijahromi M, Omidifar N, et al. Innovative Metal-Organic Frameworks for Targeted Oral Cancer Therapy: A Review. Materials (Basel). 2023;16(13). Epub 2023/07/14. doi: 10.3390/ma16134685. PubMed PMID: 37444999; PubMed Central PMCID: PMC10342828.

87. Sargazi S, Laraib U, Er S, Rahdar A, Hassanisaadi M, Zafar MN, et al. Application of Green Gold Nanoparticles in Cancer Therapy and Diagnosis. Nanomaterials [Internet]. 2022; 12(7).

88. Bharadwaj KK, Rabha B, Pati S, Sarkar T, Choudhury BK, Barman A, et al. Green Synthesis of Gold Nanoparticles Using Plant Extracts as Beneficial Prospect for Cancer Theranostics. Molecules [Internet]. 2021; 26(21).

89. Tan Y, Yan B, Xue L, Li Y, Luo X, Ji P. Surface-enhanced Raman spectroscopy of blood serum based on gold nanoparticles for the diagnosis of the oral squamous cell carcinoma. Lipids in Health and Disease. 2017;16(1):73. doi: 10.1186/s12944-017-0465-y.

90. Ghorbani M, Hamishehkar H. Redox and pH-responsive gold nanoparticles as a new platform for simultaneous triple anti-cancer drugs targeting. International Journal of Pharmaceutics. 2017;520(1):126-38. doi: https://doi.org/10.1016/j.ijpharm.2017.02.008.

91. Sakore P, Bhattacharya S, Belemkar S, Prajapati BG, Elossaily GM. The theranostic potential of green nanotechnology-enabled gold nanoparticles in cancer: A paradigm shift on diagnosis and treatment approaches. Results in Chemistry. 2024;7:101264. doi: https://doi.org/10.1016/j.rechem.2023.101264.

92. Oluremi D. Sustainability and Eco-friendly Sources of Hydroxyapatite for Biomedical Use. 2025.

93. Gurawalia P, Majumder S, Srivastava CM, Charak S, Shandilya M. Green Synthesis of Hydroxyapatite Nanoparticles: Sustainable Approaches for Biomedical Advancements. Eco-Materials and Green Energy for a Sustainable Future: CRC Press; 2024. p. 95-117.

94. Yazdanian A, Jahandideh A, Hesaraki S. The effect of green synthesis of TiO2 nanoparticles/collagen/HA scaffold in bone regeneration: As an animal study. Veterinary Medicine and Science. 2023;9(5):2342-51. doi: https://doi.org/10.1002/vms3.1222.

95. Esteves JNM. Innovative antibiofouling surface coatings for titanium dental implants. PQDT-Global. 2021.

96. Abbaszadegan A, Ghahramani Y, Farshad M, Sedigh-Shams M, Gholami A, Jamshidzadeh A. In Vitro Evaluation of Dynamic Viscosity, Surface Tension and Dentin Wettability of Silver Nanoparticles as an Irrigation Solution. Iran Endod J. 2019;14(1):23-7. Epub 2019/01/01. doi: 10.22037/iej.v14i1.21758. PubMed PMID: 36879595; PubMed Central PMCID: PMC9984811.

97. Shin YC, Bae J-H, Lee JH, Raja IS, Kang MS, Kim B, et al. Enhanced osseointegration of dental implants with reduced graphene oxide coating. Biomaterials Research. 2022;26(1):11. doi: 10.1186/s40824-022-00257-7.

98. Ghanem A, Kellesarian SV, Abduljabbar T, Al-Hamoudi N, Vohra F, Javed F. Role of Osteogenic Coatings on Implant Surfaces in Promoting Bone-To-Implant Contact in Experimental Osteoporosis: A Systematic Review and Meta-Analysis. Implant Dentistry. 2017;26(5).

99. Asadi A, Khaksar E, Hosseinpoor S, Abbasi R, Ghahramani Y. Aluminum Nanoparticles, a New Approach in Sustainable Chemistry and Usage in Medicine. Advances in Applied Nano-Bio Technologies. 2025 Jun 30:79-91.

100. Asadi A, Khaksar E, Valanik S, Ghahramani Y. New Methods of Preparing Calcium Nanomaterials as a Keystone in Biotechnology. Advances in Applied Nano-Bio Technologies. 2025 Jun 30:92-102.

101. Khaksar E, Asadi A, Rezaei M, Abbasi F, Ghahramani Y. New Approach in bioactive materials for regeneration dental application. Advances in Applied Nano-Bio Technologies. 2025 Mar 20:46-60.

Downloads

Published

2025-07-01

Submitted

2025-03-17

Revised

2025-05-10

Accepted

2025-05-21

How to Cite

Hajipour, N., Zarei, F., & Amiri, R. (2025). Biogenic Nanomaterials: A New Frontier in Oral Healthcare. Journal of Oral and Dental Health Nexus, 2(3), 1-9. https://doi.org/10.61838/kman.jodhn.2.3.2

Similar Articles

1-10 of 21

You may also start an advanced similarity search for this article.