Biomimetic nanomaterials in regenerative oral medicine, A minireview

Authors

    Alireza Asadi Dental school, Shiraz University of Medical Sciences, Shiraz, Iran
    Melika Rezaee Faculty of Materials Engineering, Islamic Azad University, Najafabad, Isfahan, Iran
    Yasamin Ghahramani * Oral and Dental Disease Research Center, Department of Endodontics, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran ghahramany@sums.ac.ir
https://doi.org/10.61838/kman.jodhn.1.1.7

Keywords:

Regenerative dentistry, Nano scaffold, Nanomaterials, Nano mimicking structures

Abstract

Regenerative dentistry uses advanced biomaterials such as nano scaffolds to address oral defects. These scaffolds mimic the extracellular matrix (ECM), promoting cell attachment, proliferation, differentiation and eventually, tissue regeneration, Common fabrication methods include electrospinning, self-assembly and thermal-induced phase separation (TIPS), allowing precise control over scaffold properties. This article reviews the use of nano scaffolds in repairing dental pulp, enamel, periodontal ligaments and bone tissue.

Downloads

Download data is not yet available.

References

1. Wu Q, Miao W-s, Zhang Y-d, Gao H-j, Hui D. Mechanical properties of nanomaterials: A review. 2020;9(1):259-73. doi: doi:10.1515/ntrev-2020-0021.

2. Koutsawa Y, Tiem S, Yu W, Addiego F, Giunta G. A micromechanics approach for effective elastic properties of nano-composites with energetic surfaces/interfaces. Composite Structures. 2017;159:278-87. doi: https://doi.org/10.1016/j.compstruct.2016.09.066.

3. Ghahramani Y, Tabibi SS, Khan MMR, Asadi A, Mohammadi E, Khaksar E, et al. Recent advances in bioactive materials: Future perspectives and opportunities in oral cancer biosensing. Talanta. 2025;286:127494. doi: https://doi.org/10.1016/j.talanta.2024.127494.

4. Ghahramani Y, Yaghoobi F, Motamedi R, Jamshidzadeh A, Abbaszadegan A. Effect of Endodontic Irrigants and Medicaments Mixed with Silver Nanoparticles against Biofilm Formation of Enterococcus faecalis. Iran Endod J. 2018;13(4):559-64. Epub 2018/10/01. doi: 10.22037/iej.v13i4.21843. PubMed PMID: 36883019; PubMed Central PMCID: PMC9985693.

5. Dingreville R, Qu J, Mohammed C. Surface free energy and its effect on the elastic behavior of nano-sized particles, wires and films. Journal of the Mechanics and Physics of Solids. 2005;53(8):1827-54. doi: https://doi.org/10.1016/j.jmps.2005.02.012.

6. Asha AB, Narain R. Chapter 15 - Nanomaterials properties. In: Narain R, editor. Polymer Science and Nanotechnology: Elsevier; 2020. p. 343-59.

7. Mazari SA, Ali E, Abro R, Khan FSA, Ahmed I, Ahmed M, et al. Nanomaterials: Applications, waste-handling, environmental toxicities, and future challenges – A review. Journal of Environmental Chemical Engineering. 2021;9(2):105028. doi: https://doi.org/10.1016/j.jece.2021.105028.

8. Rane AV, Kanny K, Abitha VK, Thomas S. Chapter 5 - Methods for Synthesis of Nanoparticles and Fabrication of Nanocomposites. In: Mohan Bhagyaraj S, Oluwafemi OS, Kalarikkal N, Thomas S, editors. Synthesis of Inorganic Nanomaterials: Woodhead Publishing; 2018. p. 121-39.

9. Chen Y, Dong X, Shafiq M, Myles G, Radacsi N, Mo X. Recent Advancements on Three-Dimensional Electrospun Nanofiber Scaffolds for Tissue Engineering. Advanced Fiber Materials. 2022;4(5):959-86. doi: 10.1007/s42765-022-00170-7.

10. Frantz C, Stewart KM, Weaver VM. The extracellular matrix at a glance. Journal of Cell Science. 2010;123(24):4195-200. doi: 10.1242/jcs.023820.

11. Diller RB, Tabor AJ. The Role of the Extracellular Matrix (ECM) in Wound Healing: A Review. Biomimetics [Internet]. 2022; 7(3).

12. Murugan R, Ramakrishna S. Nano-Featured Scaffolds for Tissue Engineering: A Review of Spinning Methodologies. Tissue Engineering. 2006;12(3):435-47. doi: 10.1089/ten.2006.12.435.

13. Asadi A, Rezaei M, Mohammadi E, Khaksar E, Khaksar E, Abbasi F, et al. Emerging Trends in Natural Polymers for Dental Regeneration.

14. Carotenuto F, Politi S, Ul Haq A, De Matteis F, Tamburri E, Terranova ML, et al. From Soft to Hard Biomimetic Materials: Tuning Micro/Nano-Architecture of Scaffolds for Tissue Regeneration. Micromachines [Internet]. 2022; 13(5).

15. Funda G, Taschieri S, Bruno GA, Grecchi E, Paolo S, Girolamo D, et al. Nanotechnology Scaffolds for Alveolar Bone Regeneration. Materials [Internet]. 2020; 13(1).

16. Saeed MA, Alfotoh MMA, Mubarak RT, Grawish ME. Surface properties and elemental composition of human treated dentin matrix nano-scaffold as direct pulp capping material. International journal of health sciences. 2022;6(S2):6079-87. doi: 10.53730/ijhs.v6nS2.6559.

17. Jiang W, Li L, Zhang D, Huang S, Jing Z, Wu Y, et al. Incorporation of aligned PCL–PEG nanofibers into porous chitosan scaffolds improved the orientation of collagen fibers in regenerated periodontium. Acta Biomaterialia. 2015;25:240-52. doi: https://doi.org/10.1016/j.actbio.2015.07.023.

18. Ji Y, Wang L, Watts DC, Qiu H, You T, Deng F, et al. Controlled-release naringin nanoscaffold for osteoporotic bone healing. Dental Materials. 2014;30(11):1263-73. doi: https://doi.org/10.1016/j.dental.2014.08.381.

19. Cheraghiyan M. Nanotechnology in Dentistry: Potential Applications and Future Perspectives. Journal of Oral and Dental Health Nexus. 2025;2(1):1-13.

20. Su Y, Toftdal MS, Le Friec A, Dong M, Han X, Chen M. 3D Electrospun Synthetic Extracellular Matrix for Tissue Regeneration. Small Science. 2021;1(7):2100003. doi: https://doi.org/10.1002/smsc.202100003.

21. Xu X, Ren S, Li L, Zhou Y, Peng W, Xu Y. Biodegradable engineered fiber scaffolds fabricated by electrospinning for periodontal tissue regeneration. Journal of Biomaterials Applications. 2020;36(1):55-75. doi: 10.1177/0885328220952250.

22. Daghrery A, Aytac Z, Dubey N, Mei L, Schwendeman A, Bottino MC. Electrospinning of dexamethasone/cyclodextrin inclusion complex polymer fibers for dental pulp therapy. Colloids and Surfaces B: Biointerfaces. 2020;191:111011. doi: https://doi.org/10.1016/j.colsurfb.2020.111011.

23. Ji D, Lin Y, Guo X, Ramasubramanian B, Wang R, Radacsi N, et al. Electrospinning of nanofibres. Nature Reviews Methods Primers. 2024;4(1):1. doi: 10.1038/s43586-023-00278-z.

24. Keirouz A, Wang Z, Reddy VS, Nagy ZK, Vass P, Buzgo M, et al. The History of Electrospinning: Past, Present, and Future Developments. Advanced Materials Technologies. 2023;8(11):2201723. doi: https://doi.org/10.1002/admt.202201723.

25. Stephanopoulos N, Ortony JH, Stupp SI. Self-assembly for the synthesis of functional biomaterials. Acta Materialia. 2013;61(3):912-30. doi: https://doi.org/10.1016/j.actamat.2012.10.046.

26. Lombardo D, Calandra P, Pasqua L, Magazù S. Self-Assembly of Organic Nanomaterials and Biomaterials: The Bottom-Up Approach for Functional Nanostructures Formation and Advanced Applications. Materials [Internet]. 2020; 13(5).

27. Liu Y, Fan L, Lin X, Zou L, Li Y, Ge X, et al. Functionalized self-assembled peptide RAD/Dentonin hydrogel scaffold promotes dental pulp regeneration. Biomedical Materials. 2022;17(1):015009. doi: 10.1088/1748-605X/ac3928.

28. A Asadi MR, Y Ghahramani. recent advances in bioactive materials for diagnosis and treatment of oral cancer. advances in applied nano biotechnology. 2023;4(1):21_35.

29. Ramachandran VS, Radhakrishnan M, Ravindrran MB, Alagarsamy V, Palanisamy GS, Ravindrran MB. Functionalized nanoparticles: a paradigm shift in regenerative endodontic procedures. Cureus. 2022;14(12).

30. Zeinali R, del Valle LJ, Torras J, Puiggalí J. Recent Progress on Biodegradable Tissue Engineering Scaffolds Prepared by Thermally-Induced Phase Separation (TIPS). International Journal of Molecular Sciences [Internet]. 2021; 22(7).

31. Huang F, Cheng L, Li J, Ren B. Nanofibrous scaffolds for regenerative endodontics treatment. Frontiers in Bioengineering and Biotechnology. 2022;10.

32. Etezadkeyhan P. Recent Advances in Regenerative Endodontics: Clinical Applications and Challenges. Journal of Oral and Dental Health Nexus. 2024;1(1):29-42.

33. Qu T, Jing J, Jiang Y, Taylor RJ, Feng JQ, Geiger B, et al. Magnesium-Containing Nanostructured Hybrid Scaffolds for Enhanced Dentin Regeneration. Tissue Engineering Part A. 2014;20(17-18):2422-33. doi: 10.1089/ten.tea.2013.0741.

34. Nabavizadeh MR, Moazzami F, Gholami A, Mehrabi V, Ghahramani Y. Cytotoxic Effect of Nano Fast Cement and ProRoot Mineral Trioxide Aggregate on L-929 Fibroblast Cells: an in vitro Study. J Dent (Shiraz). 2022;23(1):13-9. Epub 2022/03/17. doi: 10.30476/dentjods.2021.87208.1239. PubMed PMID: 35291684; PubMed Central PMCID: PMC8918640.

35. Zerafat M, Enteghad M, Baghaei S, Asadi A, Ghahramani Y. Maxillary Second Molar with Five Root Canals and a Root-Like Enamel Pearl: A Rare Case Report. Iranian Endodontic Journal. 2025;20(1):e6.

36. Rajangam T, An SSA. Fibrinogen and fibrin based micro and nano scaffolds incorporated with drugs, proteins, cells and genes for therapeutic biomedical applications. International Journal of Nanomedicine. 2013;8(null):3641-62. doi: 10.2147/IJN.S43945.

37. Sen MP, Kshirsagar JS, Mustilwar R. Nanotechnology in Dentistry: Revolutionizing Oral Healthcare for The Future.

38. Sharma P, Saurav S, Tabassum Z, Sood B, Kumar A, Malik T, et al. Applications and interventions of polymers and nanomaterials in alveolar bone regeneration and tooth dentistry. RSC advances. 2024;14(49):36226-45.

39. Tsuchida S, Nakayama T. Recent Clinical Treatment and Basic Research on the Alveolar Bone. Biomedicines [Internet]. 2023; 11(3).

40. Sohn H-S, Oh J-K. Review of bone graft and bone substitutes with an emphasis on fracture surgeries. Biomaterials Research.23(1):9. doi: 10.1186/s40824-019-0157-y.

41. Betz RR. Limitations of autograft and allograft: new synthetic solutions. Orthopedics. 2002;25(5):S561-S70.

42. Sanz-Sánchez I, Sanz-Martín I, Ortiz-Vigón A, Molina A, Sanz M. Complications in bone-grafting procedures: Classification and management. Periodontology 2000. 2022;88(1):86-102. doi: https://doi.org/10.1111/prd.12413.

43. Liu L, Liu J, Wang M, Min S, Cai Y, Zhu L, et al. Preparation and characterization of nano-hydroxyapatite/silk fibroin porous scaffolds. Journal of Biomaterials Science, Polymer Edition. 2008;19(3):325-38. doi: 10.1163/156856208783721010.

44. Zhang J, Chen Y, Xu J, Wang J, Li C, Wang L. Tissue engineering using 3D printed nano-bioactive glass loaded with NELL1 gene for repairing alveolar bone defects. Regenerative Biomaterials. 2018;5(4):213-20. doi: 10.1093/rb/rby015.

45. Alici-Garipcan A, Korkusuz P, Bilgic E, Askin K, Aydin HM, Ozturk E, et al. Critical-size alveolar defect treatment via TGF-ß3 and BMP-2 releasing hybrid constructs. Journal of Biomaterials Science, Polymer Edition. 2019;30(5):415-36. doi: 10.1080/09205063.2019.1571397.

46. Moazzami F, Ghahramani Y, Tamaddon AM, Dehghani Nazhavani A, Adl A. A histological comparison of a new pulp capping material and mineral trioxide aggregate in rat molars. Iran Endod J. 2014;9(1):50-5. Epub 2014/01/08. PubMed PMID: 24396376; PubMed Central PMCID: PMC3881302.

47. Murray PE. Platelet-Rich Plasma and Platelet-Rich Fibrin Can Induce Apical Closure More Frequently Than Blood-Clot Revascularization for the Regeneration of Immature Permanent Teeth: A Meta-Analysis of Clinical Efficacy. Frontiers in Bioengineering and Biotechnology. 2018;6.

48. Abbaszadegan A, Ghahramani Y, Farshad M, Sedigh-Shams M, Gholami A, Jamshidzadeh A. In Vitro Evaluation of Dynamic Viscosity, Surface Tension and Dentin Wettability of Silver Nanoparticles as an Irrigation Solution. Iran Endod J. 2019;14(1):23-7. Epub 2019/01/01. doi: 10.22037/iej.v14i1.21758. PubMed PMID: 36879595; PubMed Central PMCID: PMC9984811.

49. Palasuk J, Kamocki K, Hippenmeyer L, Platt JA, Spolnik KJ, Gregory RL, et al. Bimix Antimicrobial Scaffolds for Regenerative Endodontics. Journal of Endodontics. 2014;40(11):1879-84. doi: https://doi.org/10.1016/j.joen.2014.07.017.

50. Moazami F, Gholami A, Mehrabi V, Ghahramani Y. Evaluation of the Antibacterial and Antifungal Effects of ProRoot MTA and Nano-fast Cement: An In Vitro Study. J Contemp Dent Pract. 2020;21(7):760-4. Epub 2020/10/07. PubMed PMID: 33020359.

51. Li X, Wang J, Joiner A, Chang J. The remineralisation of enamel: a review of the literature. Journal of Dentistry. 2014;42:S12-S20. doi: https://doi.org/10.1016/S0300-5712(14)50003-6.

52. Navin HK, Prasanna KB. Enamel regeneration-current progress and challenges. Journal of clinical and diagnostic research: JCDR. 2014;8(9):ZE06.

53. Li Q-L, Ning T-Y, Cao Y, Zhang W-b, Mei ML, Chu CH. A novel self-assembled oligopeptide amphiphile for biomimetic mineralization of enamel. BMC Biotechnology. 2014;14(1):32. doi: 10.1186/1472-6750-14-32.

54. Oktar FN. Microstructure and mechanical properties of sintered enamel hydroxyapatite. Ceramics International. 2007;33(7):1309-14. doi: https://doi.org/10.1016/j.ceramint.2006.05.022.

55. Cao CY, Mei ML, Li Q-l, Lo EC, Chu CH. Methods for Biomimetic Mineralisation of Human Enamel: A Systematic Review. Materials [Internet]. 2015; 8(6):[2873-86 pp.].

56. Cui H, You Y, Cheng G-W, Lan Z, Zou K-L, Mai Q-Y, et al. Advanced materials and technologies for oral diseases. Science and Technology of Advanced Materials. 2023;24(1):2156257. doi: 10.1080/14686996.2022.2156257.

57. Ding Q, Cui J, Shen H, He C, Wang X, Shen SGF, et al. Advances of nanomaterial applications in oral and maxillofacial tissue regeneration and disease treatment. WIREs Nanomedicine and Nanobiotechnology. 2021;13(2):e1669. doi: https://doi.org/10.1002/wnan.1669.

58. Mousavi SM, Hashemi SA, Fallahi Nezhad F, Binazadeh M, Dehdashtijahromi M, Omidifar N, et al. Innovative Metal-Organic Frameworks for Targeted Oral Cancer Therapy: A Review. Materials (Basel). 2023;16(13). Epub 2023/07/14. doi: 10.3390/ma16134685. PubMed PMID: 37444999; PubMed Central PMCID: PMC10342828.

59. Mitroulia A, Athanasiadou P, Bakopoulou A, Poulopoulos A, Panta P, Patil S, et al. Salivary Gland Stem Cells and Tissue Regeneration: An Update on Possible Therapeutic Application. The journal of contemporary dental practice. 2019;20:978-86. doi: 10.5005/jp-journals-10024-2620.

60. Porcheri C, Mitsiadis TA. Physiology, Pathology and Regeneration of Salivary Glands. Cells [Internet]. 2019; 8(9).

61. Hong HJ, Cho J-M, Yoon Y-J, Choi D, Lee S, Lee H, et al. Thermoresponsive fiber-based microwells capable of formation and retrieval of salivary gland stem cell spheroids for the regeneration of irradiation-damaged salivary glands. Journal of Tissue Engineering. 2022;13:20417314221085645. doi: 10.1177/20417314221085645.

62. Ramesh P. Biomimetic Scaffolds Targeting Remediation of Fibrosis and Regeneration of the Salivary Gland. 2022.

63. Kerry RG, Sahoo SM, Das G, Patra JK. Conventional and nano-based therapy against chronic inflammatory autoimmune diseases. Asian J Biol. 2018;6:1-8.

64. Rahman SU, Nagrath M, Ponnusamy S, Arany PR. Nanoscale and Macroscale Scaffolds with Controlled-Release Polymeric Systems for Dental Craniomaxillofacial Tissue Engineering. Materials [Internet]. 2018; 11(8).

65. Zhao Q, Li G, Wang T, Jin Y, Lu W, Ji J. Human Periodontal Ligament Stem Cells Transplanted with Nanohydroxyapatite/Chitosan/Gelatin 3D Porous Scaffolds Promote Jaw Bone Regeneration in Swine. Stem Cells and Development. 2021;30(10):548-59. doi: 10.1089/scd.2020.0204.

Downloads

Published

2024-10-01

Submitted

2024-06-20

Revised

2024-08-08

Accepted

2024-09-18

How to Cite

Asadi, A. ., Rezaee, M. ., & Ghahramani, Y. . (2024). Biomimetic nanomaterials in regenerative oral medicine, A minireview. Journal of Oral and Dental Health Nexus, 1(1), 70-75. https://doi.org/10.61838/kman.jodhn.1.1.7

Similar Articles

1-10 of 15

You may also start an advanced similarity search for this article.