Antifungal activity of silver nanoparticles in oral health

Authors

    Ehsan Khaksar * Cyprus Health and Social Sciences University, Guzelyurt, Cyprus Ehsan.kh0666@gmail.com
https://doi.org/10.61838/kman.jodhn.2.2.5

Keywords:

Antifungal activity, silver nanoparticles , oral health

Abstract

Fungal infections pose a significant challenge in medical and dental fields, often leading to persistent and treatment-resistant conditions. Nano silver particles (AgNPs) have emerged as promising antifungal agents due to their broad-spectrum activity, minimal resistance development, and ability to penetrate biofilms. This article reviews the antifungal mechanisms of AgNPs, their effectiveness against common fungal pathogens, and their applications in medicine and dentistry. Furthermore, the challenges and future prospects of AgNPs as antifungal agents are discussed.

Downloads

Download data is not yet available.

References

1. Oliveira M, Oliveira D, Lisboa C, Boechat JL, Delgado L. Clinical manifestations of human exposure to fungi. Journal of Fungi. 2023;9(3):381.

2. Parija SC. Systemic mycoses and opportunistic infections. Textbook of Microbiology and Immunology: Springer; 2023. p. 973-1002.

3. Perlin DS. Mechanisms of echinocandin antifungal drug resistance. Annals of the new York Academy of Sciences. 2015;1354(1):1-11.

4. Mousavi SM, Nezhad FF, Ghahramani Y, Binazadeh M, Javidi Z, Azhdari R, et al. Recent Advances in Bioactive Carbon Nanotubes Based on Polymer Composites for Biosensor Applications. Chemistry & Biodiversity. 2024;21(7):e202301288.

5. Ghahramani Y, Tabibi SS, Khan MMR, Asadi A, Mohammadi E, Khaksar E, et al. Recent advances in bioactive materials: Future perspectives and opportunities in oral cancer biosensing. Talanta. 2025;286:127494. Epub 2025/01/13. doi: 10.1016/j.talanta.2024.127494. PubMed PMID: 39799882.

6. A Asadi MR, Y Ghahramani. recent advances in bioactive materials for diagnosis and treatment of oral cancer. advances in applied nano biotechnology. 2023;4(1):21_35.

7. Asadi A, Rezaei M, Mohammadi E, Khaksar E, Khaksar E, Abbasi F, et al. Emerging Trends in Natural Polymers for Dental Regeneration.

8. Zerafat M, Enteghad M, Baghaei S, Asadi A, Ghahramani Y. Maxillary Second Molar with Five Root Canals and a Root-Like Enamel Pearl: A Rare Case Report. Iranian Endodontic Journal. 2025;20(1):e6.

9. Kairdolf BA, Qian X, Nie S. Bioconjugated Nanoparticles for Biosensing, in Vivo Imaging, and Medical Diagnostics. Analytical Chemistry. 2017;89(2):1015-31. doi: 10.1021/acs.analchem.6b04873.

10. Padmanabhan P, Kumar A, Kumar S, Chaudhary RK, Gulyás B. Nanoparticles in practice for molecular-imaging applications: an overview. Acta biomaterialia. 2016;41:1-16.

11. Abbaszadegan A, Ghahramani Y, Farshad M, Sedigh-Shams M, Gholami A, Jamshidzadeh A. In vitro evaluation of dynamic viscosity, surface tension and dentin wettability of silver nanoparticles as an irrigation solution. Iranian Endodontic Journal. 2019;14(1):23.

12. Jangid H, Singh S, Kashyap P, Singh A, Kumar G. Advancing biomedical applications: An in-depth analysis of silver nanoparticles in antimicrobial, anticancer, and wound healing roles. Frontiers in Pharmacology. 2024;15:1438227.

13. Politano AD, Campbell KT, Rosenberger LH, Sawyer RG. Use of silver in the prevention and treatment of infections: silver review. Surgical infections. 2013;14(1):8-20.

14. Bamal D, Singh A, Chaudhary G, Kumar M, Singh M, Rani N, et al. Silver nanoparticles biosynthesis, characterization, antimicrobial activities, applications, cytotoxicity and safety issues: An updated review. Nanomaterials. 2021;11(8):2086.

15. Cavalheiro M, Teixeira MC. Candida biofilms: threats, challenges, and promising strategies. Frontiers in medicine. 2018;5:28.

16. Ghahramani Y, Yaghoobi F, Motamedi R, Jamshidzadeh A, Abbaszadegan A. Effect of endodontic irrigants and medicaments mixed with silver nanoparticles against biofilm formation of enterococcus faecalis. Iranian Endodontic Journal. 2018;13(4):559.

17. Slavin YN, Bach H. Mechanisms of antifungal properties of metal nanoparticles. Nanomaterials. 2022;12(24):4470.

18. Padhi S, Behera A. Silver-based nanostructures as antifungal agents: Mechanisms and applications. Silver nanomaterials for Agri-food applications: Elsevier; 2021. p. 17-38.

19. Mallineni SK, Sakhamuri S, Kotha SL, AlAsmari ARGM, AlJefri GH, Almotawah FN, et al. Silver nanoparticles in dental applications: A descriptive review. Bioengineering. 2023;10(3):327.

20. Fernandez CC, Sokolonski AR, Fonseca MS, Stanisic D, Araújo DB, Azevedo V, et al. Applications of silver nanoparticles in dentistry: advances and technological innovation. International Journal of Molecular Sciences. 2021;22(5):2485.

21. Shrivastava S, Bera T, Roy A, Singh G, Ramachandrarao P, Dash D. Retracted: Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology. 2007;18(22):225103.

22. Marambio-Jones C, Hoek EM. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. Journal of nanoparticle research. 2010;12:1531-51.

23. Benn TM, Westerhoff P. Nanoparticle silver released into water from commercially available sock fabrics. Environmental science & technology. 2008;42(11):4133-9.

24. Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M. Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine: Nanotechnology, Biology and Medicine. 2009;5(4):382-6.

25. Alavi M, Ashengroph M. Mycosynthesis of AgNPs: mechanisms of nanoparticle formation and antimicrobial activities. Expert Review of Anti-Infective Therapy. 2023;21(4):355-63.

26. Baker A, Iram S, Syed A, Elgorban AM, Al-Falih AM, Bahkali AH, et al. Potentially bioactive fungus mediated silver nanoparticles. Nanomaterials. 2021;11(12):3227.

27. Rai MK, Deshmukh S, Ingle A, Gade A. Silver nanoparticles: the powerful nanoweapon against multidrug‐resistant bacteria. Journal of applied microbiology. 2012;112(5):841-52.

28. Radhakrishnan VS, Reddy Mudiam MK, Kumar M, Dwivedi SP, Singh SP, Prasad T. Silver nanoparticles induced alterations in multiple cellular targets, which are critical for drug susceptibilities and pathogenicity in fungal pathogen (Candida albicans). International journal of nanomedicine. 2018:2647-63.

29. Hashem AH, Saied E, Amin BH, Alotibi FO, Al-Askar AA, Arishi AA, et al. Antifungal activity of biosynthesized silver nanoparticles (AgNPs) against aspergilli causing aspergillosis: Ultrastructure Study. Journal of Functional Biomaterials. 2022;13(4):242.

30. Sahoo B, Rath SK, Champati BB, Panigrahi LL, Pradhan AK, Nayak S, et al. Photocatalytic activity of biosynthesized silver nanoparticle fosters oxidative stress at nanoparticle interface resulting in antimicrobial and cytotoxic activities. Environmental Toxicology. 2023;38(7):1577-88.

31. Lara HH, Romero-Urbina DG, Pierce C, Lopez-Ribot JL, Arellano-Jiménez MJ, Jose-Yacaman M. Effect of silver nanoparticles on Candida albicans biofilms: an ultrastructural study. Journal of nanobiotechnology. 2015;13:1-12.

32. Saini P, Saha SK, Roy P, Chowdhury P, Babu SPS. Evidence of reactive oxygen species (ROS) mediated apoptosis in Setaria cervi induced by green silver nanoparticles from Acacia auriculiformis at a very low dose. Experimental parasitology. 2016;160:39-48.

33. Radhakrishnan VS, Dwivedi SP, Siddiqui MH, Prasad T. In vitro studies on oxidative stress-independent, Ag nanoparticles-induced cell toxicity of Candida albicans, an opportunistic pathogen. International journal of nanomedicine. 2018;13(sup1):91-6.

34. Hajipour MJ, Fromm KM, Ashkarran AA, de Aberasturi DJ, de Larramendi IR, Rojo T, et al. Antibacterial properties of nanoparticles. Trends in biotechnology. 2012;30(10):499-511.

35. Monteiro D, Gorup L, Silva S, Negri M, De Camargo E, Oliveira R, et al. Silver colloidal nanoparticles: antifungal effect against adhered cells and biofilms of Candida albicans and Candida glabrata. Biofouling. 2011;27(7):711-9.

36. Qu R, Chen M, Liu J, Xie Q, Liu N, Ge F. Blockage of ATPase-mediated energy supply inducing metabolic disturbances in algal cells under silver nanoparticles stress. Journal of Environmental Sciences. 2023;131:141-50.

37. Martinez-Gutierrez F, Olive PL, Banuelos A, Orrantia E, Nino N, Sanchez EM, et al. Synthesis, characterization, and evaluation of antimicrobial and cytotoxic effect of silver and titanium nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine. 2010;6(5):681-8.

38. Fan F, Liu Y, Liu Y, Lv R, Sun W, Ding W, et al. Candida albicans biofilms: antifungal resistance, immune evasion, and emerging therapeutic strategies. International journal of antimicrobial agents. 2022;60(5-6):106673.

39. Gulati M, Nobile CJ. Candida albicans biofilms: development, regulation, and molecular mechanisms. Microbes and infection. 2016;18(5):310-21.

40. Mansoor S, Zahoor I, Baba TR, Padder SA, Bhat Z, Koul AM, et al. Fabrication of silver nanoparticles against fungal pathogens. Frontiers in Nanotechnology. 2021;3:679358.

41. Barua N, Buragohain AK. Therapeutic Potential of Silver Nanoparticles (AgNPs) as an Antimycobacterial Agent: A Comprehensive Review. Antibiotics. 2024;13(11):1106.

42. Perlin DS, Rautemaa-Richardson R, Alastruey-Izquierdo A. The global problem of antifungal resistance: prevalence, mechanisms, and management. The Lancet infectious diseases. 2017;17(12):e383-e92.

43. AlJindan R, AlEraky DM. Silver nanoparticles: a promising antifungal agent against the growth and biofilm formation of the emergent Candida auris. Journal of Fungi. 2022;8(7):744.

44. Dakal TC, Kumar A, Majumdar RS, Yadav V. Mechanistic basis of antimicrobial actions of silver nanoparticles. Frontiers in microbiology. 2016;7:1831.

45. Mousavi SM, Hashemi SA, Fallahi Nezhad F, Binazadeh M, Dehdashtijahromi M, Omidifar N, et al. Innovative Metal-Organic Frameworks for Targeted Oral Cancer Therapy: A Review. Materials (Basel). 2023;16(13). Epub 2023/07/14. doi: 10.3390/ma16134685. PubMed PMID: 37444999; PubMed Central PMCID: PMC10342828.

46. Okafor EC. Investigating Cytotoxic Cell Responses During Cryptococcal Meningitis in Patients With Chronic Advanced HIV Co-Infection: University of Minnesota; 2024.

47. Diniz-Lima I, Fonseca LMd, Silva-Junior EBd, Guimarães-de-Oliveira JC, Freire-de-Lima L, Nascimento DO, et al. Cryptococcus: history, epidemiology and immune evasion. Applied Sciences. 2022;12(14):7086.

48. Wollina U, Nenoff P, Verma S, Hipler U-C. Fungal infections. Roxburgh's Common Skin Diseases: CRC Press; 2022. p. 81-90.

49. Kaur S, Singh S. Biofilm formation by Aspergillus fumigatus. Medical mycology. 2014;52(1):2-9.

50. Perlin DS. Antifungals. Candida albicans: Cellular and Molecular Biology: Springer; 2017. p. 471-89.

51. Al-Fattani MA, Douglas LJ. Penetration of Candida biofilms by antifungal agents. Antimicrobial agents and chemotherapy. 2004;48(9):3291-7.

52. Rex JH, Rinaldi M, Pfaller M. Resistance of Candida species to fluconazole. Antimicrobial agents and chemotherapy. 1995;39(1):1-8.

53. Perlin DS. Echinocandin resistance in Candida. Clinical Infectious Diseases. 2015;61(suppl_6):S612-S7.

54. Zainab S, Hamid S, Sahar S, Ali N. Fluconazole and biogenic silver nanoparticles-based nano-fungicidal system for highly efficient elimination of multi-drug resistant Candida biofilms. Materials Chemistry and Physics. 2022;276:125451.

55. Rakhshan A, Kamel BR, Saffaei A, Tavakoli-Ardakani M. Hepatotoxicity Induced by Azole Antifungal Agents: A Review Study. Iranian Journal of Pharmaceutical Research: IJPR. 2023;22(1):e130336.

56. Noga M, Milan J, Frydrych A, Jurowski K. Toxicological aspects, safety assessment, and green toxicology of silver nanoparticles (AgNPs)—critical review: state of the art. International Journal of Molecular Sciences. 2023;24(6):5133.

57. Moazzami F, Ghahramani Y, Tamaddon AM, Dehghani Nazhavani A, Adl A. A histological comparison of a new pulp capping material and mineral trioxide aggregate in rat molars. Iran Endod J. 2014;9(1):50-5. Epub 2014/01/08. PubMed PMID: 24396376; PubMed Central PMCID: PMC3881302.

58. Moazami F, Gholami A, Mehrabi V, Ghahramani Y. Evaluation of the antibacterial and antifungal effects of ProRoot MTA and nano-fast cement: an in vitro study. J Contemp Dent Pract. 2020;21(7):760-4.

59. Nami S, Aghebati-Maleki A, Aghebati-Maleki L. Current applications and prospects of nanoparticles for antifungal drug delivery. EXCLI journal. 2021;20:562.

60. Abdallah BM, Rajendran P, Ali EM. Potential treatment of dermatophyte trichophyton rubrum in rat model using topical green biosynthesized silver nanoparticles with achillea santolina extract. Molecules. 2023;28(4):1536.

61. Beyth N, Houri-Haddad Y, Domb A, Khan W, Hazan R. Alternative antimicrobial approach: nano‐antimicrobial materials. Evidence‐Based Complementary and Alternative Medicine. 2015;2015(1):246012.

62. Izadi A, Paknia F, Roostaee M, Mousavi SAA, Barani M. Advancements in nanoparticle-based therapies for multidrug-resistant candidiasis infections: a comprehensive review. Nanotechnology. 2024;35(33):332001.

63. Astaneh ME, Fereydouni N. Silver Nanoparticles in 3D Printing: A New Frontier in Wound Healing. ACS Omega. 2024;9(40):41107-29. doi: 10.1021/acsomega.4c04961.

64. Aldakheel FM, Sayed MME, Mohsen D, Fagir MH, El Dein DK. Green synthesis of silver nanoparticles loaded hydrogel for wound healing; systematic review. Gels. 2023;9(7):530.

65. Ahmad N, Jafri Z, Khan ZH. Evaluation of nanomaterials to prevent oral Candidiasis in PMMA based denture wearing patients. A systematic analysis. Journal of Oral Biology and Craniofacial Research. 2020;10(2):189-93.

66. Adl A, Abbaszadegan A, Gholami A, Parvizi F, Ghahramani Y. Effect of a new imidazolium-based silver nanoparticle irrigant on the bond strength of epoxy resin sealer to root canal dentine. Iranian Endodontic Journal. 2019;14(2):122.

67. Negut I, Albu C, Bita B. Advances in antimicrobial coatings for preventing infections of head-related implantable medical devices. Coatings. 2024;14(3):256.

68. Hadi S, Omar O. Antibacterial effect and biocompatibility of silver nanoparticle-coated bone allograft substitutes. Cellular and Molecular Biology. 2024;70(3):67-77.

69. Notario-Pérez F, Martín-Illana A, Cazorla-Luna R, Ruiz-Caro R, Veiga MD. Applications of chitosan in surgical and post-surgical materials. Marine drugs. 2022;20(6):396.

70. Nabavizadeh MR, Moazzami F, Gholami A, Mehrabi V, Ghahramani Y. Cytotoxic Effect of Nano Fast Cement and ProRoot Mineral Trioxide Aggregate on L-929 Fibroblast Cells: an in vitro Study. J Dent (Shiraz). 2022;23(1):13-9. Epub 2022/03/17. doi: 10.30476/dentjods.2021.87208.1239. PubMed PMID: 35291684; PubMed Central PMCID: PMC8918640.

71. Liao C, Li Y, Tjong SC. Bactericidal and cytotoxic properties of silver nanoparticles. International journal of molecular sciences. 2019;20(2):449.

72. Li N, Sun C, Jiang J, Wang A, Wang C, Shen Y, et al. Advances in controlled-release pesticide formulations with improved efficacy and targetability. Journal of agricultural and food chemistry. 2021;69(43):12579-97.

73. Rafeeq H, Hussain A, Ambreen A, Waqas M, Bilal M, Iqbal HM. Functionalized nanoparticles and their environmental remediation potential: a review. Journal of Nanostructure in Chemistry. 2022;12(6):1007-31.

74. Bao S, Wang H, Zhang W, Xie Z, Fang T. An investigation into the effects of silver nanoparticles on natural microbial communities in two freshwater sediments. Environmental Pollution. 2016;219:696-704.

75. Harun-Ur-Rashid M, Foyez T, Krishna SBN, Poda S, Imran AB. Recent advances of silver nanoparticle-based polymer nanocomposites for biomedical applications. RSC advances. 2025;15(11):8480-505.

76. Khan I, Saeed K, Khan I. Nanoparticles: Properties, applications and toxicities. Arabian journal of chemistry. 2019;12(7):908-31.

Downloads

Published

2025-04-01

Submitted

2024-12-28

Revised

2025-02-06

Accepted

2025-02-28

How to Cite

Khaksar , E. . (2025). Antifungal activity of silver nanoparticles in oral health. Journal of Oral and Dental Health Nexus, 2(2), 38-48. https://doi.org/10.61838/kman.jodhn.2.2.5