Graphene-Based Nanocoatings for Dental Implants: Strengthening Performance at the Nanoscale

Authors

    Erfan Khaksar Cyprus Health and Social Sciences University, Guzelyurt, Cyprus.
https://doi.org/10.61838/kman.jodhn.2.3.4

Keywords:

Graphene Nanocoatings, Dental Implants, Osseointegration, Antibacterial Surface Modification, Stimuli-Responsive Biomaterials

Abstract

Graphene, a single layer of sp²-hybridized carbon atoms, is gaining prominence in dental implantology due to its exceptional strength, conductivity, biocompatibility, and surface functionalization capabilities. Graphene-based nanocoatings enhance implant performance by improving mechanical durability, corrosion resistance, and antibacterial activity while promoting osseointegration through osteoblast stimulation. Derivatives like graphene oxide (GO) and reduced graphene oxide (rGO) enable further customization for drug delivery and biofunctionalization. Various deposition techniques—such as chemical vapor deposition, electrophoretic deposition, and dip coating—enable uniform and functional coatings. In vitro and in vivo studies demonstrate reduced pathogen colonization and improved bone integration. Despite promising outcomes, challenges remain in standardizing coating methods, ensuring long-term safety, and achieving scalable production. Continued interdisciplinary research is essential to transition these innovations into clinical practice. This review summarizes recent developments in graphene-based nanocoatings for dental implants, focusing on material properties, biological interactions, and clinical potential, while identifying key areas for future research and clinical translation.

Downloads

Download data is not yet available.

References

1. Panahi O, Eslamlou SF. Bioengineering Innovations in Dental Implantology.

2. Roccuzzo A, Imber J-C, Salvi GE, Roccuzzo M. Peri-implantitis as the consequence of errors in implant therapy. Periodontology 2000. 2023;92(1):350-61. doi: https://doi.org/10.1111/prd.12482.

3. bin Anwar Fadzil AF, Pramanik A, Basak A, Prakash C, Shankar S. Role of surface quality on biocompatibility of implants-A review. Annals of 3D Printed Medicine. 2022;8:100082.

4. Stich T, Alagboso F, Křenek T, Kovářík T, Alt V, Docheva D. Implant-bone-interface: Reviewing the impact of titanium surface modifications on osteogenic processes in vitro and in vivo. Bioengineering & Translational Medicine. 2022;7(1):e10239. doi: https://doi.org/10.1002/btm2.10239.

5. Li J, Zhou P, Attarilar S, Shi H. Innovative Surface Modification Procedures to Achieve Micro/Nano-Graded Ti-Based Biomedical Alloys and Implants. Coatings. 2021;11(6):647. PubMed PMID: doi:10.3390/coatings11060647.

6. Asadi A, Rezaee M, Ghahramani Y. Biomimetic nanomaterials in regenerative oral medicine, A minireview. Journal of Oral and Dental Health Nexus. 2024;1(1):70-5. doi: 10.61838/kman.jodhn.1.1.7.

7. Adl A, Abbaszadegan A, Gholami A, Parvizi F, Ghahramani Y. Effect of a New Imidazolium-based Silver Nanoparticle Irrigant on the Bond Strength of Epoxy Resin Sealer to Root Canal Dentine. Iran Endod J. 2019;14(2):122-5. Epub 2019/04/01. doi: 10.22037/iej.v14i2.22589. PubMed PMID: 36855446; PubMed Central PMCID: PMC9968383.

8. Batool F, Özçelik H, Stutz C, Gegout P-Y, Benkirane-Jessel N, Petit C, et al. Modulation of immune-inflammatory responses through surface modifications of biomaterials to promote bone healing and regeneration. Journal of Tissue Engineering. 2021;12:20417314211041428. doi: 10.1177/20417314211041428. PubMed PMID: 34721831.

9. Asadi A, Rezaee M, Ghahramani Y. Sliver Nanoparticles: A Promising Strategy in Preventive Dentistry. Journal of Oral and Dental Health Nexus. 2025;2(2):24-37. doi: 10.61838/kman.jodhn.2.2.4.

10. Mitra D, Kang E-T, Neoh KG. Polymer-based coatings with integrated antifouling and bactericidal properties for targeted biomedical applications. ACS Applied Polymer Materials. 2021;3(5):2233-63.

11. Razaq A, Bibi F, Zheng X, Papadakis R, Jafri SHM, Li H. Review on Graphene-, Graphene Oxide-, Reduced Graphene Oxide-Based Flexible Composites: From Fabrication to Applications. Materials. 2022;15(3):1012. PubMed PMID: doi:10.3390/ma15031012.

12. Yusaf T, Mahamude ASF, Farhana K, Harun WSW, Kadirgama K, Ramasamy D, et al. A Comprehensive Review on Graphene Nanoparticles: Preparation, Properties, and Applications. Sustainability. 2022;14(19):12336. PubMed PMID: doi:10.3390/su141912336.

13. Mousavi SM, Nezhad FF, Ghahramani Y, Binazadeh M, Javidi Z, Azhdari R, et al. Recent Advances in Bioactive Carbon Nanotubes Based on Polymer Composites for Biosensor Applications. Chem Biodivers. 2024;21(7):e202301288. Epub 2024/05/03. doi: 10.1002/cbdv.202301288. PubMed PMID: 38697942.

14. Ghahramani Y, Tabibi SS, Khan MMR, Asadi A, Mohammadi E, Khaksar E, et al. Recent advances in bioactive materials: Future perspectives and opportunities in oral cancer biosensing. Talanta. 2025;286:127494. doi: https://doi.org/10.1016/j.talanta.2024.127494.

15. Dubey R, Dutta D, Sarkar A, Chattopadhyay P. Functionalized carbon nanotubes: Synthesis, properties and applications in water purification, drug delivery, and material and biomedical sciences. Nanoscale Advances. 2021;3(20):5722-44.

16. Pandit S, Gaska K, Kádár R, Mijakovic I. Graphene-Based Antimicrobial Biomedical Surfaces. ChemPhysChem. 2021;22(3):250-63. doi: https://doi.org/10.1002/cphc.202000769.

17. Daneshmandi L, Barajaa M, Tahmasbi Rad A, Sydlik SA, Laurencin CT. Graphene-Based Biomaterials for Bone Regenerative Engineering: A Comprehensive Review of the Field and Considerations Regarding Biocompatibility and Biodegradation. Advanced Healthcare Materials. 2021;10(1):2001414. doi: https://doi.org/10.1002/adhm.202001414.

18. Austin CP. Opportunities and challenges in translational science. Clinical and Translational Science. 2021;14(5):1629-47. doi: https://doi.org/10.1111/cts.13055.

19. Mamidi N, Delgadillo RMV, Barrera EV, Ramakrishna S, Annabi N. Carbonaceous nanomaterials incorporated biomaterials: The present and future of the flourishing field. Composites Part B: Engineering. 2022;243:110150.

20. Zhang F, Yang K, Liu G, Chen Y, Wang M, Li S, et al. Recent advances on graphene: Synthesis, properties and applications. Composites Part A: Applied Science and Manufacturing. 2022;160:107051.

21. Saha S, Roy S. Metallic Dental Implants Wear Mechanisms, Materials, and Manufacturing Processes: A Literature Review. Materials. 2023;16(1):161. PubMed PMID: doi:10.3390/ma16010161.

22. Derakhshi M, Daemi S, Shahini P, Habibzadeh A, Mostafavi E, Ashkarran AA. Two-Dimensional Nanomaterials beyond Graphene for Biomedical Applications. Journal of Functional Biomaterials. 2022;13(1):27. PubMed PMID: doi:10.3390/jfb13010027.

23. Magne TM, de Oliveira Vieira T, Alencar LMR, Junior FFM, Gemini-Piperni S, Carneiro SV, et al. Graphene and its derivatives: understanding the main chemical and medicinal chemistry roles for biomedical applications. Journal of Nanostructure in Chemistry. 2022;12(5):693-727. doi: 10.1007/s40097-021-00444-3.

24. Guo S, Garaj S, Bianco A, Ménard-Moyon C. Controlling covalent chemistry on graphene oxide. Nature Reviews Physics. 2022;4(4):247-62. doi: 10.1038/s42254-022-00422-w.

25. Sánchez-Bodón J, Andrade del Olmo J, Alonso JM, Moreno-Benítez I, Vilas-Vilela JL, Pérez-Álvarez L. Bioactive Coatings on Titanium: A Review on Hydroxylation, Self-Assembled Monolayers (SAMs) and Surface Modification Strategies. Polymers. 2022;14(1):165. PubMed PMID: doi:10.3390/polym14010165.

26. Shao Y, Sun Z, Tian Z, Li S, Wu G, Wang M, et al. Regulating Oxygen Substituents with Optimized Redox Activity in Chemically Reduced Graphene Oxide for Aqueous Zn-Ion Hybrid Capacitor. Advanced Functional Materials. 2021;31(6):2007843. doi: https://doi.org/10.1002/adfm.202007843.

27. Díez-Pascual AM, Luceño-Sánchez JA. Antibacterial Activity of Polymer Nanocomposites Incorporating Graphene and Its Derivatives: A State of Art. Polymers. 2021;13(13):2105. PubMed PMID: doi:10.3390/polym13132105.

28. Wu S, Xu J, Zou L, Luo S, Yao R, Zheng B, et al. Long-lasting renewable antibacterial porous polymeric coatings enable titanium biomaterials to prevent and treat peri-implant infection. Nat Commun. 2021;12(1):3303.

29. Kang MS, Jeong SJ, Lee SH, Kim B, Hong SW, Lee JH, et al. Reduced graphene oxide coating enhances osteogenic differentiation of human mesenchymal stem cells on Ti surfaces. Biomaterials Research. 2021;25(1):4. doi: 10.1186/s40824-021-00205-x.

30. Bellet P, Gasparotto M, Pressi S, Fortunato A, Scapin G, Mba M, et al. Graphene-Based Scaffolds for Regenerative Medicine. Nanomaterials. 2021;11(2):404. PubMed PMID: doi:10.3390/nano11020404.

31. Sahoo J, Sarkhel S, Mukherjee N, Jaiswal A. Nanomaterial-Based Antimicrobial Coating for Biomedical Implants: New Age Solution for Biofilm-Associated Infections. ACS Omega. 2022;7(50):45962-80. doi: 10.1021/acsomega.2c06211.

32. Srimaneepong V, Skallevold HE, Khurshid Z, Zafar MS, Rokaya D, Sapkota J. Graphene for Antimicrobial and Coating Application. International Journal of Molecular Sciences. 2022;23(1):499. PubMed PMID: doi:10.3390/ijms23010499.

33. Bertran-Serra E, Rodriguez-Miguel S, Li Z, Ma Y, Farid G, Chaitoglou S, et al. Advancements in Plasma-Enhanced Chemical Vapor Deposition for Producing Vertical Graphene Nanowalls. Nanomaterials. 2023;13(18):2533. PubMed PMID: doi:10.3390/nano13182533.

34. Vir Singh M, Kumar Tiwari A, Gupta R. Catalytic Chemical Vapor Deposition Methodology for Carbon Nanotubes Synthesis. ChemistrySelect. 2023;8(32):e202204715. doi: https://doi.org/10.1002/slct.202204715.

35. Mousavi SM, Hashemi SA, Fallahi Nezhad F, Binazadeh M, Dehdashtijahromi M, Omidifar N, et al. Innovative Metal-Organic Frameworks for Targeted Oral Cancer Therapy: A Review. Materials (Basel). 2023;16(13). Epub 2023/07/14. doi: 10.3390/ma16134685. PubMed PMID: 37444999; PubMed Central PMCID: PMC10342828.

36. Kim C-H, Lee S-Y, Rhee KY, Park S-J. Carbon-based composites in biomedical applications: a comprehensive review of properties, applications, and future directions. Advanced Composites and Hybrid Materials. 2024;7(2):55. doi: 10.1007/s42114-024-00846-1.

37. Atiq Ur Rehman M, Chen Q, Braem A, Shaffer MSP, Boccaccini AR. Electrophoretic deposition of carbon nanotubes: recent progress and remaining challenges. International Materials Reviews. 2021;66(8):533-62. doi: 10.1080/09506608.2020.1831299.

38. Butt MA. Thin-Film Coating Methods: A Successful Marriage of High-Quality and Cost-Effectiveness—A Brief Exploration. Coatings. 2022;12(8):1115. PubMed PMID: doi:10.3390/coatings12081115.

39. Hadzhieva Z, Boccaccini AR. Recent developments in electrophoretic deposition (EPD) of antibacterial coatings for biomedical applications-A review. Current Opinion in Biomedical Engineering. 2022;21:100367.

40. Sharif S, Ahmad KS, Rehman F, Bhatti Z, Thebo KH. Two-dimensional graphene oxide based membranes for ionic and molecular separation: Current status and challenges. Journal of Environmental Chemical Engineering. 2021;9(4):105605.

41. Afsharimani N, Talimian A, Merino E, Durán A, Castro Y, Galusek D. Improving corrosion protection of Mg alloys (AZ31B) using graphene-based hybrid coatings. International Journal of Applied Glass Science. 2022;13(1):143-50. doi: https://doi.org/10.1111/ijag.16539.

42. Omer S, Forgách L, Zelkó R, Sebe I. Scale-up of Electrospinning: Market Overview of Products and Devices for Pharmaceutical and Biomedical Purposes. Pharmaceutics. 2021;13(2):286. PubMed PMID: doi:10.3390/pharmaceutics13020286.

43. Mateos-Maroto A, Abelenda-Núñez I, Ortega F, Rubio RG, Guzmán E. Polyelectrolyte Multilayers on Soft Colloidal Nanosurfaces: A New Life for the Layer-By-Layer Method. Polymers. 2021;13(8):1221. PubMed PMID: doi:10.3390/polym13081221.

44. Nikolova MP, Apostolova MD. Advances in Multifunctional Bioactive Coatings for Metallic Bone Implants. Materials. 2023;16(1):183. PubMed PMID: doi:10.3390/ma16010183.

45. Đorđević S, Gonzalez MM, Conejos-Sánchez I, Carreira B, Pozzi S, Acúrcio RC, et al. Current hurdles to the translation of nanomedicines from bench to the clinic. Drug Delivery and Translational Research. 2022;12(3):500-25. doi: 10.1007/s13346-021-01024-2.

46. Li X, Liang X, Wang Y, Wang D, Teng M, Xu H, et al. Graphene-Based Nanomaterials for Dental Applications: Principles, Current Advances, and Future Outlook. Frontiers in Bioengineering and Biotechnology. 2022;Volume 10 - 2022. doi: 10.3389/fbioe.2022.804201.

47. Pandey C, Rokaya D, Bhattarai BP. Contemporary Concepts in Osseointegration of Dental Implants: A Review. BioMed Research International. 2022;2022(1):6170452. doi: https://doi.org/10.1155/2022/6170452.

48. Liu S, Zhang L, Li Z, Gao F, Zhang Q, Bianco A, et al. Materials-Mediated In Situ Physical Cues for Bone Regeneration. Advanced Functional Materials. 2024;34(1):2306534. doi: https://doi.org/10.1002/adfm.202306534.

49. Rajendran AK, Sankar D, Amirthalingam S, Kim HD, Rangasamy J, Hwang NS. Trends in mechanobiology guided tissue engineering and tools to study cell-substrate interactions: a brief review. Biomaterials Research. 2023;27(1):55. doi: 10.1186/s40824-023-00393-8.

50. Shin YC, Bae J-H, Lee JH, Raja IS, Kang MS, Kim B, et al. Enhanced osseointegration of dental implants with reduced graphene oxide coating. Biomaterials Research. 2022;26(1):11. doi: 10.1186/s40824-022-00257-7.

51. Xie M, Gao M, Yun Y, Malmsten M, Rotello VM, Zboril R, et al. Antibacterial nanomaterials: mechanisms, impacts on antimicrobial resistance and design principles. Angewandte Chemie International Edition. 2023;62(17):e202217345.

52. Nabavizadeh M, Ghahramani Y, Abbaszadegan A, Jamshidzadeh A, Jenabi P, Makarempour A. In vivo biocompatibility of an ionic liquid-protected silver nanoparticle solution as root canal irrigant. Iranian endodontic journal. 2018;13(3):293.

53. Rodríguez-Merchán EC, Davidson DJ, Liddle AD. Recent Strategies to Combat Infections from Biofilm-Forming Bacteria on Orthopaedic Implants. International Journal of Molecular Sciences. 2021;22(19):10243. PubMed PMID: doi:10.3390/ijms221910243.

54. Williams AG, Moore E, Thomas A, Johnson JA. Graphene-Based Materials in Dental Applications: Antibacterial, Biocompatible, and Bone Regenerative Properties. International Journal of Biomaterials. 2023;2023(1):8803283. doi: https://doi.org/10.1155/2023/8803283.

55. Liu J, Liu Z, Pang Y, Zhou H. The interaction between nanoparticles and immune system: application in the treatment of inflammatory diseases. Journal of Nanobiotechnology. 2022;20(1):127. doi: 10.1186/s12951-022-01343-7.

56. Li Y, Chen M, Yan J, Zhou W, Gao S, Liu S, et al. Tannic acid/Sr2+-coated silk/graphene oxide-based meniscus scaffold with anti-inflammatory and anti-ROS functions for cartilage protection and delaying osteoarthritis. Acta biomaterialia. 2021;126:119-31.

57. Atia GA, Abdal Dayem A, Taher ES, Alghonemy WY, Cho S-G, Aldarmahi AA, et al. Urine-derived stem cells: a sustainable resource for advancing personalized medicine and dental regeneration. Frontiers in Bioengineering and Biotechnology. 2025;Volume 13 - 2025. doi: 10.3389/fbioe.2025.1571066.

58. Inchingolo AM, Malcangi G, Inchingolo AD, Mancini A, Palmieri G, Di Pede C, et al. Potential of Graphene-Functionalized Titanium Surfaces for Dental Implantology: Systematic Review. Coatings. 2023;13(4):725. PubMed PMID: doi:10.3390/coatings13040725.

59. Singh AB, Khandelwal C, Dangayach GS. Revolutionizing healthcare materials: Innovations in processing, advancements, and challenges for enhanced medical device integration and performance. Journal of Micromanufacturing. 2024:25165984241256234.

60. Vafadar A, Guzzomi F, Rassau A, Hayward K. Advances in Metal Additive Manufacturing: A Review of Common Processes, Industrial Applications, and Current Challenges. Applied Sciences. 2021;11(3):1213. PubMed PMID: doi:10.3390/app11031213.

61. Davis R, Singh A, Jackson MJ, Coelho RT, Prakash D, Charalambous CP, et al. A comprehensive review on metallic implant biomaterials and their subtractive manufacturing. The International Journal of Advanced Manufacturing Technology. 2022;120(3):1473-530. doi: 10.1007/s00170-022-08770-8.

62. Artrith N, Butler KT, Coudert F-X, Han S, Isayev O, Jain A, et al. Best practices in machine learning for chemistry. Nature Chemistry. 2021;13(6):505-8. doi: 10.1038/s41557-021-00716-z.

63. Li J, Zeng H, Zeng Z, Zeng Y, Xie T. Promising Graphene-Based Nanomaterials and Their Biomedical Applications and Potential Risks: A Comprehensive Review. ACS Biomaterials Science & Engineering. 2021;7(12):5363-96. doi: 10.1021/acsbiomaterials.1c00875.

64. Moazami F, Gholami A, Mehrabi V, Ghahramani Y. Evaluation of the Antibacterial and Antifungal Effects of ProRoot MTA and Nano-fast Cement: An In Vitro Study. J Contemp Dent Pract. 2020;21(7):760-4. Epub 2020/10/07. PubMed PMID: 33020359.

65. Hosseinpour S, Gaudin A, Peters OA. A critical analysis of research methods and experimental models to study biocompatibility of endodontic materials. International Endodontic Journal. 2022;55(S2):346-69. doi: https://doi.org/10.1111/iej.13701.

66. Xiao Y, Pang YX, Yan Y, Qian P, Zhao H, Manickam S, et al. Synthesis and Functionalization of Graphene Materials for Biomedical Applications: Recent Advances, Challenges, and Perspectives. Advanced Science. 2023;10(9):2205292. doi: https://doi.org/10.1002/advs.202205292.

67. Ben Charif A, Zomahoun HTV, Gogovor A, Abdoulaye Samri M, Massougbodji J, Wolfenden L, et al. Tools for assessing the scalability of innovations in health: a systematic review. Health Research Policy and Systems. 2022;20(1):34. doi: 10.1186/s12961-022-00830-5.

68. Shokri A, Fard MS. Water-energy nexus: Cutting edge water desalination technologies and hybridized renewable-assisted systems; challenges and future roadmaps. Sustainable Energy Technologies and Assessments. 2023;57:103173.

69. Zhou L, Miller J, Vezza J, Mayster M, Raffay M, Justice Q, et al. Additive Manufacturing: A Comprehensive Review. Sensors. 2024;24(9):2668. PubMed PMID: doi:10.3390/s24092668.

70. Souto EB, Blanco-Llamero C, Krambeck K, Kiran NS, Yashaswini C, Postwala H, et al. Regulatory insights into nanomedicine and gene vaccine innovation: Safety assessment, challenges, and regulatory perspectives. Acta biomaterialia. 2024.

71. Malekmohammadi S, Mohammed RUR, Samadian H, Zarebkohan A, García-Fernández A, Kokil G, et al. Nonordered dendritic mesoporous silica nanoparticles as promising platforms for advanced methods of diagnosis and therapies. Materials Today Chemistry. 2022;26:101144.

72. Liu C, Tan D, Chen X, Liao J, Wu L. Research on Graphene and Its Derivatives in Oral Disease Treatment. International Journal of Molecular Sciences. 2022;23(9):4737. PubMed PMID: doi:10.3390/ijms23094737.

73. Yan D, Wang Z, Zhang Z. Stimuli-Responsive Crystalline Smart Materials: From Rational Design and Fabrication to Applications. Accounts of Chemical Research. 2022;55(7):1047-58. doi: 10.1021/acs.accounts.2c00027.

74. Wei H, Cui J, Lin K, Xie J, Wang X. Recent advances in smart stimuli-responsive biomaterials for bone therapeutics and regeneration. Bone Research. 2022;10(1):17. doi: 10.1038/s41413-021-00180-y.

75. Akbarzadeh FZ, Sarraf M, Ghomi ER, Kumar VV, Salehi M, Ramakrishna S, et al. A state-of-the-art review on recent advances in the fabrication and characteristics of magnesium-based alloys in biomedical applications. Journal of Magnesium and Alloys. 2024.

76. Harun-Ur-Rashid M, Jahan I, Foyez T, Imran AB. Bio-inspired nanomaterials for micro/nanodevices: a new era in biomedical applications. Micromachines. 2023;14(9):1786.

77. Abbaszadegan A, Ghahramani Y, Farshad M, Sedigh-Shams M, Gholami A, Jamshidzadeh A. In Vitro Evaluation of Dynamic Viscosity, Surface Tension and Dentin Wettability of Silver Nanoparticles as an Irrigation Solution. Iran Endod J. 2019;14(1):23-7. Epub 2019/01/01. doi: 10.22037/iej.v14i1.21758. PubMed PMID: 36879595; PubMed Central PMCID: PMC9984811.

78. Zhang Z, Liu A, Fan J, Wang M, Dai J, Jin X, et al. A drug-loaded composite coating to improve osteogenic and antibacterial properties of Zn–1Mg porous scaffolds as biodegradable bone implants. Bioactive Materials. 2023;27:488-504.

79. Weissler EH, Naumann T, Andersson T, Ranganath R, Elemento O, Luo Y, et al. The role of machine learning in clinical research: transforming the future of evidence generation. Trials. 2021;22(1):537. doi: 10.1186/s13063-021-05489-x.

80. Hull SM, Brunel LG, Heilshorn SC. 3D Bioprinting of Cell-Laden Hydrogels for Improved Biological Functionality. Advanced Materials. 2022;34(2):2103691. doi: https://doi.org/10.1002/adma.202103691.

81. Rossoni AL, de Vasconcellos EPG, de Castilho Rossoni RL. Barriers and facilitators of university-industry collaboration for research, development and innovation: a systematic review. Management Review Quarterly. 2024;74(3):1841-77. doi: 10.1007/s11301-023-00349-1.

82. Roohani I, Newsom E, Zreiqat H. High-resolution vat-photopolymerization of personalized bioceramic implants: new advances, regulatory hurdles, and key recommendations. International Materials Reviews. 2023;68(8):1075-97. doi: 10.1080/09506608.2023.2194744.

83. Ramburrun P, Khan RA, Choonara YE. Design, preparation, and functionalization of nanobiomaterials for enhanced efficacy in current and future biomedical applications. Nanotechnology Reviews. 2022;11(1):1802-26. doi: doi:10.1515/ntrev-2022-0106.

84. Cheng J, Liu J, Wu B, Liu Z, Li M, Wang X, et al. Graphene and its Derivatives for Bone Tissue Engineering: In Vitro and In Vivo Evaluation of Graphene-Based Scaffolds, Membranes and Coatings. Frontiers in Bioengineering and Biotechnology. 2021;Volume 9 - 2021. doi: 10.3389/fbioe.2021.734688.

85. Zare P, Aleemardani M, Seifalian A, Bagher Z, Seifalian AM. Graphene Oxide: Opportunities and Challenges in Biomedicine. Nanomaterials. 2021;11(5):1083. PubMed PMID: doi:10.3390/nano11051083.

86. Jena G, Philip J. A review on recent advances in graphene oxide-based composite coatings for anticorrosion applications. Progress in Organic Coatings. 2022;173:107208.

87. Kar A, Ahamad N, Dewani M, Awasthi L, Patil R, Banerjee R. Wearable and implantable devices for drug delivery: Applications and challenges. Biomaterials. 2022;283:121435.

88. Ramezani M, Ripin ZM. An Overview of Enhancing the Performance of Medical Implants with Nanocomposites. Journal of Composites Science. 2023;7(5):199. PubMed PMID: doi:10.3390/jcs7050199.

89. Kumar A, Singh G. Surface modification of Ti6Al4V alloy via advanced coatings: mechanical, tribological, corrosion, wetting, and biocompatibility studies. Journal of Alloys and Compounds. 2024:174418.

90. Gaur M, Misra C, Yadav AB, Swaroop S, Maolmhuaidh FÓ, Bechelany M, et al. Biomedical Applications of Carbon Nanomaterials: Fullerenes, Quantum Dots, Nanotubes, Nanofibers, and Graphene. Materials. 2021;14(20):5978. PubMed PMID: doi:10.3390/ma14205978.

91. Khaksar E, Asadi A, Rezaei M, Abbasi F, Ghahramani Y. New Approach in bioactive materials for regeneration dental application. Advances in Applied Nano-Bio Technologies. 2025 Mar 20:46-60.

92. Asadi A, Khaksar E, Valanik S, Ghahramani Y. New Methods of Preparing Calcium Nanomaterials as a Keystone in Biotechnology. Advances in Applied Nano-Bio Technologies. 2025 Jun 30:92-102.

93. Asadi A, Khaksar E, Hosseinpoor S, Abbasi R, Ghahramani Y. Aluminum Nanoparticles, a New Approach in Sustainable Chemistry and Usage in Medicine. Advances in Applied Nano-Bio Technologies. 2025 Jun 30:79-91.

Downloads

Published

2025-07-01

Submitted

2025-03-22

Revised

2025-05-15

Accepted

2025-05-26

How to Cite

Khaksar, E. (2025). Graphene-Based Nanocoatings for Dental Implants: Strengthening Performance at the Nanoscale. Journal of Oral and Dental Health Nexus, 2(3), 1-9. https://doi.org/10.61838/kman.jodhn.2.3.4

Similar Articles

1-10 of 23

You may also start an advanced similarity search for this article.