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AB ST R ACT  

Gold nanoparticles (AuNPs) have emerged as highly effective biosensing agents in oral diagnostics and therapeutic monitoring due to their 

unique optical, electronic, and surface properties. Their exceptional surface plasmon resonance enables sensitive detection of biomolecules 

associated with oral diseases, including cancer markers, bacterial antigens, and inflammatory proteins. Functionalized AuNPs can selectively 

bind to target molecules, allowing for real-time, non-invasive diagnostics through colorimetric assays, fluorescence quenching, and surface-

enhanced Raman spectroscopy (SERS). In clinical dentistry, AuNP-based biosensors facilitate early diagnosis of conditions such as periodontal 

disease, oral squamous cell carcinoma, and peri-implantitis. Their biocompatibility and chemical stability further support integration into smart 

diagnostic platforms and intraoral devices. As precision dentistry advances, gold nanoparticle biosensors hold promise for transforming point-

of-care diagnostics, enabling timely and personalized interventions. 
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Introduction 

In therapeutics, AuNPs serve as versatile platforms for 

targeted drug delivery and antimicrobial therapy. Their 

ability to penetrate biofilms and release payloads under 

stimuli like pH or near-infrared light improves treatment 

efficacy for infections and oral cancers while minimizing 

side effects (1). Additionally, AuNPs contribute to 

regenerative dentistry by promoting osteoblast growth 

and enabling real-time monitoring of bone regeneration 

around dental implants. 

Despite their promise, challenges such as long-term 

stability, clinical scalability, and regulatory approval 

remain. Future directions include integrating AuNPs 

with artificial intelligence for predictive diagnostics and 

smart dental implants, as well as developing 

multifunctional, stimuli-responsive systems for 

personalized care. By bridging nanotechnology with 

digital health, AuNPs are poised to revolutionize oral 

healthcare, shifting paradigms from reactive treatments 

to proactive, precision-based approaches. This review 

highlights the current applications, advantages, and 

future potential of AuNPs in transforming dental 

medicine. 

Nanotechnology is a rapidly advancing field that 

involves the manipulation of matter at the atomic and 

molecular scale, typically within the range of 1 to 100 

nanometers (2). At this scale, materials exhibit unique 

physical, chemical, and biological properties that differ 

significantly from their bulk counterparts (3, 4). These 

novel characteristics enable groundbreaking 

applications across diverse sectors, including medicine, 

electronics, energy, and environmental science (5-8). For 

instance, in medicine (9), nanoparticles are used for 

targeted drug delivery (10), improving treatment 

efficacy while minimizing side effects (11-13). In 

electronics, nanotechnology has led to the development 

of smaller, faster, and more efficient devices (14). The 
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ability to engineer materials at the nanoscale opens up 

unprecedented opportunities for innovation, making 

nanotechnology a cornerstone of modern scientific and 

technological progress (15). 

The interdisciplinary nature of nanotechnology 

integrates principles from physics, chemistry, biology, 

and engineering to create functional systems with 

enhanced performance (16, 17). One of the most 

promising aspects of nanotechnology is its potential to 

address global challenges, such as clean energy 

production, food production, and disease diagnosis (18). 

For example, nanomaterials like graphene and quantum 

dots are being explored for their exceptional 

conductivity and optical properties, which could 

revolutionize bioimaging and energy storage (19).  (20). 

As research continues to expand, nanotechnology holds 

the promise of transforming industries and improving 

quality of life, while also demanding careful 

consideration of its societal implications (21). 

Gold nanoparticles (AuNPs) have emerged as a 

powerful biosensing tool (22) in oral medicine and 

dentistry due to their unique optical, electrical, and 

biocompatible properties (23). Their high surface-to-

volume ratio (24) allows for dense functionalization with 

biomolecules (e.g., antibodies, DNA probes, or enzymes), 

enhancing their ability to capture and detect disease-

specific biomarkers with exceptional sensitivity (25, 26). 

Additionally, AuNPs exhibit strong surface plasmon 

resonance (SPR), a phenomenon where incident light 

interacts with conduction electrons, producing intense, 

tunable optical signals (27). This property enables 

colorimetric detection—where the aggregation or 

dispersion of AuNPs causes visible color shifts—

facilitating rapid, instrument-free diagnostics in 

chairside settings (28). 

Beyond optical advantages, AuNPs possess excellent 

electrical conductivity, making them ideal for 

electrochemical biosensors that amplify signal 

transduction when detecting biomarkers in saliva or 

gingival crevicular fluid (GCF) (28, 29). Their 

biocompatibility and low toxicity ensure safe integration 

into oral diagnostic platforms, drug delivery systems, 

and even dental implants without adverse immune 

reactions (30-32). 

Moreover, AuNPs can be engineered into various 

shapes (spheres, rods, stars) and sizes (1–100 nm), 

allowing customization for specific applications, such as 

photothermal therapy for antibacterial coatings for 

dental implants (32). Their ease of functionalization with 

thiolated ligands, polymers, or biomolecules further 

enhances targeting precision, enabling multiplexed 

detection of pathogens (e.g., Porphyromonas gingivalis) 

or inflammatory markers (e.g., IL-6, TNF-α) in a single 

assay (33-35). 

By leveraging these properties, AuNPs are 

transforming oral healthcare through non-invasive, real-

time monitoring of diseases like oral cancer, caries, and 

periodontitis, while paving the way for personalized, 

point-of-care dental diagnostics (36, 37). 

Gold nanoparticles (AuNPs) have gained significant 

attention in oral medicine and dentistry due to their 

remarkable potential in diagnostics, therapeutics, and 

preventive care (37). Their unique optical, electrical, and 

biocompatible properties make them ideal for 

applications ranging from early disease detection to 

targeted drug delivery (38). In the following sections, we 

will explore the key applications of AuNPs in oral 

healthcare, focusing on their role in cancer diagnostics, 

periodontal disease monitoring, antimicrobial strategies, 

and regenerative dentistry. By examining these 

advancements, we can better understand how 

nanotechnology is shaping the future of dental medicine. 

Key Applications of Gold Nanoparticles in Oral Medicine & 
Dentistry 

Early Detection of Oral Diseases 

Oral Cancer (Oral Squamous Cell Carcinoma - OSCC) 

Gold nanoparticles (AuNPs) have revolutionized the 

early detection of oral squamous cell carcinoma (OSCC) 

through their exceptional biosensing capabilities (25). 

When functionalized with specific antibodies or DNA 

probes, AuNPs can selectively bind to OSCC biomarkers 

present in saliva, including interleukin-6 (IL-6), CD44, 

and matrix metalloproteinase-9 (MMP-9), even at 

ultralow concentrations (39). This interaction triggers 

highly sensitive and specific diagnostic signals, enabling 

non-invasive cancer screening with unprecedented 

accuracy (40). A key advantage of AuNPs lies in their 

surface plasmon resonance (SPR) properties, which 

cause dramatic color shifts when nanoparticle 

aggregation or dispersion occurs due to biomarker 

binding (41). In colorimetric assays, this optical 

phenomenon allows for visual detection of cancer 
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markers without complex instrumentation – a simple 

color change from red (dispersed AuNPs) to blue/purple 

(aggregated AuNPs) can indicate the presence of 

malignant biomarkers (42). This approach has been 

successfully implemented in lateral flow assays (LFAs) 

for point-of-care testing, where results can be 

interpreted using just a saliva sample for the detection of 

antibodies (43) (Figure 1). 

 
Figure 1. Biosensing Mechanism of Gold Nanoparticles for OSCC Detection 

 

Gold nanoparticle (AuNP)-based diagnostic platforms 

demonstrate remarkable versatility when integrated 

with surface-enhanced Raman spectroscopy (SERS), 

achieving better functionality compared to conventional 

methods (44). the utilization of gold fluorescence 

nanoparticles in conjunction with SERS holds 

tremendous potential for revolutionizing cancer 

detection (45). The plasmonic properties of AuNPs create 

electromagnetic "hot spots" that dramatically enhance 

Raman scattering signals from target molecules (46). 

Furthermore, AuNP multiplexing capabilities permit 

simultaneous quantification of multiple distinct cancer 

biomarkers through spectral fingerprint differentiation, 

while maintaining rapid assay times (47). Combined with 

portable SERS reader technology, this multi-analyte 

detection capacity enables comprehensive oral cancer 

screening in primary care settings with good 

sensitivity/specificity, revolutionizing early OSCC 

detection paradigms (48). 

The nanotechnology-driven approaches represent a 

transformative paradigm shift in oral oncology 

diagnostics, effectively replacing invasive tissue biopsies 

with rapid, chairside saliva tests offering suitable 

diagnostic accuracy in multicenter trials (49, 50). The 

transition to non-invasive AuNP-based assays 

demonstrates greater sensitivity than conventional 

histopathology for early-stage OSCC detection, while 

eliminating procedural risks and patient discomfort (51). 

Recent advancements are being validated in longitudinal 

studies monitoring high-risk populations, linear 

discriminant analysis (PCA-LDA) and logistic regression 

(LR), revealing a sensitivity of 89% and 68% and a 

diagnostic accuracy of 73% and 60% for saliva and oral 

cells, respectively (52))Figure 2). 
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Figure 2. Gold Nanoparticle-Based Lateral Flow Assay for Early OSCC Detection 

 

Periodontal Disease 

Gold nanoparticles (AuNPs) enable highly sensitive 

periodontal pathogen detection through multiple 

mechanisms. A recent study developed a gold 

nanoparticle (AuNP)-based biosensor that detects 

protease activity (e.g., gingipains from Porphyromonas 

gingivalis) by monitoring localized surface plasmon 

resonance (LSPR) peak shifts. When proteases like 

trypsin or gingipains (Kgp/RgpB) degrade the casein 

coating on AuNPs, a blueshift (~1–2 nm) occurs, while 

bacterial supernatants cause a redshift (~2 nm) due to 

nonspecific protein binding. The sensor demonstrated 

high sensitivity, with a detection limit < 0.1 μg/mL (4.3 

nM)—well below gingipain levels in severe periodontitis 

(~50 μg/mL)—and specificity, as only gingipain-active 

samples induced significant shifts. This cost-effective, 

rapid system shows promise for chair-side periodontal 

diagnostics by enabling real-time detection of 

pathogenic protease activity (53). Electrochemical 

biosensors utilize antibody-coated AuNPs immobilized 

on electrodes to generate quantifiable electrical signals 

during pathogen binding, with a 2024 study 

demonstrating high sensitivity for salivary biomarkers 

detection within 9 minutes (54, 55). Additionally, 

surface-enhanced Raman spectroscopy (SERS) leverages 

AuNPs' plasmonic properties to amplify bacterial 

biomarker signals, permitting multiplexed detection of 

multiple pathogens in a single assay through their 

unique spectral fingerprints (56). These complementary 

approaches provide rapid, sensitive, and quantitative 

alternatives to conventional periodontal diagnostics. 

Gold nanoparticles (AuNPs) revolutionize 

inflammatory biomarker monitoring in periodontitis by 

enabling ultrasensitive quantification of key cytokines in 

gingival crevicular fluid (GCF) (57). For critical markers 

like IL-10, antibody-conjugated AuNPs in 

electrochemical sensors achieve remarkable detection 

limits (as demonstrated by graphene-AuNP hybrid 

systems) (58).In addition, aptamer-functionalized 

AuNPs facilitate rapid, colorimetric semi-quantitative 

assessment of inflammation severity (59). Additionally, 

MMP-8-specific aptamer-AuNP complexes permit early 

identification of active periodontal tissue destruction 

prior to radiographic evidence, and osteocalcin-sensitive 

AuNP sensors precisely track bone remodeling dynamics 
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during regenerative therapies (60). These AuNP-based 

platforms collectively provide unprecedented precision 

in periodontal disease staging, enabling 1- earlier 

intervention through sensitive cytokine detection, 2- 

real-time treatment monitoring, and 3- personalized 

therapeutic approaches through multiplexed biomarker 

analysis - all with minimal sample requirements and 

rapid turnaround times ideal for clinical implementation 

(57). 

The next generation of AuNP-based periodontal 

diagnostics is poised to integrate with emerging 

technologies through three transformative approaches: 

1- Smartphone-compatible AuNP sensors wirelessly 

transmit pathogen loads and cytokine levels to clinician 

dashboards via mobile apps, enabling real-time remote 

monitoring—a strategy first validated in cancer 

diagnostics (61); 2- AI-powered predictive systems that 

analyze longitudinal AuNP sensor data through machine 

learning algorithms to forecast individual disease 

trajectories and optimize treatment timing (61); and 3- 

Theranostic AuNP platforms combining simultaneous 

pathogen detection with on-demand release of 

antimicrobial peptides or anti-inflammatory drugs 

directly within periodontal pockets (62). Together, these 

advancements are fundamentally transforming 

periodontal disease management by enabling 

unprecedentedly early, accurate, and non-invasive 

(saliva/GCF-based) monitoring of both microbial and 

host factors (63). This technological convergence is 

catalyzing a paradigm shift from reactive, symptom-

driven treatment to truly personalized, preemptive 

periodontal care, with clinical trials already 

demonstrating improvement in treatment outcomes 

through AuNP-guided therapy adjustments. Table 1 

summarizes the key applications of gold nanoparticles 

(AuNPs) in detecting oral diseases, highlighting the 

targeted biomarkers, detection methods, and advantages 

over traditional diagnostic approaches (Table 1). 

Table 1. Key Applications of AuNPs in Oral Disease Detection 

Disease AuNP-Based Detection Method Biomarkers/Pathogens Advantages 

Oral Cancer (OSCC) Colorimetric assays, SERS, lateral 
flow assays (LFAs). 

IL-6, CD44, MMP-9. Non-invasive, chairside results (89% sensitivity), 
replaces tissue biopsies. 

Periodontitis LSPR shifts, electrochemical sensors. Gingipains (P. gingivalis), IL-10, MMP-8. Detects proteolytic activity at <0.1 μg/mL; real-time 
monitoring. 

Dental Caries SERS, colorimetric bacterial binding. S. mutans, Lactobacillus spp., lactic acid. Multiplexed detection (<10³ CFU/mL); visual 
readout. 

Peri-Implantitis AuNP-coated implants, biofilm 
sensors. 

Bacterial biofilms (e.g., P. gingivalis). Early infect 

 

This table summarizes the major diagnostic 

applications of AuNPs in various oral diseases, 

highlighting specific detection methods, target 

biomarkers or pathogens, and the clinical advantages 

offered. From non-invasive cancer screening to real-time 

monitoring of periodontal pathogens, AuNP-based 

technologies demonstrate high sensitivity, rapid 

diagnostics, and potential for point-of-care use. 

Dental Caries & Bacterial Biofilm Detection and 
Prevention 

Gold nanoparticles (AuNPs) are transforming dental 

caries and biofilm management through their 

multifunctional optical, electrochemical, and 

antimicrobial properties (64). When functionalized with 

caries-specific antibodies or aptamers, AuNPs enable 

ultrasensitive (<10³ CFU/mL) detection of cariogenic 

pathogens like Streptococcus mutans and Lactobacillus 

spp. via three synergistic mechanisms: 1-Colorimetric 

assays using antibody-conjugated AuNPs that exhibit 

visible red-to-blue transitions upon bacterial binding in 

saliva, enabling instrument-free chairside diagnosis (65); 

2-Electrochemical sensors with AuNP-modified 

electrodes that quantify bacterial metabolites (e.g., lactic 

acid) at picomolar concentrations for precise caries risk 

stratification (66); and 3- Surface-enhanced Raman 

spectroscopy (SERS) platforms where AuNPs amplify 

pathogen-specific spectral fingerprints, permitting 

multiplexed identification of multiple biofilm-associated 

microorganisms in dental plaque samples (67). This tri-

modal detection capability - combining visual, electrical, 

and spectroscopic readouts - allows for real-time, 

quantitative assessment of both planktonic bacteria and 

established biofilms, significantly advancing early caries 

intervention strategies. 

Gold nanoparticles (AuNPs) have emerged as a 

promising tool for dental caries prevention by leveraging 

their unique antibacterial, biofilm-disrupting, and 

remineralization properties (68). Functionalized AuNPs 

can selectively target cariogenic bacteria like 
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Streptococcus mutans through surface modifications 

with antimicrobial peptides or chitosan, disrupting 

bacterial membranes and inhibiting biofilm formation 

(69). Near-infrared (NIR) light-activated AuNPs generate 

localized hyperthermia, effectively eradicating mature 

biofilms while sparing healthy tissue (70). Additionally, 

AuNPs enhance remineralization by serving as scaffolds 

for hydroxyapatite deposition, repairing early enamel 

lesions (71). Their ability to penetrate biofilms and 

deliver fluoride or antimicrobial agents directly to 

caries-prone sites further improves preventive efficacy 

(72). With biocompatibility and customizable surface 

chemistry, AuNPs offer a multifaceted approach to caries 

management, combining antibacterial action, biofilm 

control, and enamel repair in a single platform. 

The future of AuNP-based caries management is 

evolving toward smart, predictive systems through 

groundbreaking developments that integrate 

nanotechnology with artificial intelligence and 

personalized medicine (73). Researchers are developing 

multifunctional AuNP platforms capable of real-time 

biofilm monitoring via wireless sensors, which transmit 

data to AI algorithms that predict caries risk and 

optimize treatment timing  (74). Additionally, pH-

responsive AuNP carriers are being engineered to 

autonomously release antimicrobials or remineralizing 

agents only when acidic conditions are detected, 

enabling targeted therapy with minimal disruption to 

oral microbiota  (75). Furthermore, advances in bioactive 

AuNP composites for dental materials promise long-

term protection by combining sustained antimicrobial 

activity with enhanced mechanical properties in fillings 

and sealants  (76). These innovations collectively herald 

a new era of precision dentistry, where AuNP-enabled 

systems provide continuous, proactive caries prevention 

tailored to individual patient needs.  

Salivary Diagnostics 

Saliva is an emerging diagnostic medium that contains 

a wide array of biomarkers, including proteins, nucleic 

acids, hormones, and metabolites, which can indicate 

both oral and systemic diseases such as diabetes, HIV, 

and human papillomavirus (HPV). Unlike blood-based 

diagnostics, saliva collection is non-invasive, cost-

effective, and easily accessible, making it ideal for point-

of-care (POC) testing (77-79). However, detecting low-

abundance biomarkers in saliva requires highly sensitive 

and specific analytical techniques (80). Gold 

nanoparticles (AuNPs) have gained significant attention 

in salivary diagnostics due to their unique optical, 

electrical, and biocompatible properties (36, 81). Their 

high surface-to-volume ratio allows for efficient 

biomarker conjugation, while their localized surface 

plasmon resonance (LSPR) enables colorimetric 

detection, making them ideal for rapid diagnostic 

applications (82). 

One of the most promising applications of AuNPs in 

salivary diagnostics is in lateral flow assays (LFAs), 

which provide a simple, low-cost, and rapid detection 

method suitable for chairside testing (83). In AuNP-

based LFAs, saliva samples are applied to a test strip, 

where target biomarkers bind to AuNP-conjugated 

antibodies (84). As the sample migrates via capillary 

action, the AuNP-analyte complexes are captured at 

specific test lines, producing a visible color change that 

indicates the presence of the biomarker (85). This 

technology has been successfully employed for detecting 

oral diseases (e.g., periodontal pathogens, oral cancer 

biomarkers) and systemic conditions (e.g., HIV 

antibodies, glucose levels for diabetes monitoring) (86-

88). The advantages of AuNP-LFAs include minimal 

sample preparation, rapid results (less than 20 minutes), 

and no requirement for sophisticated laboratory 

equipment, making them particularly valuable in 

resource-limited settings (89). 

Recent advancements in AuNP-LFAs have focused on 

improving sensitivity and multiplexing capabilities. For 

instance, integrating fluorescent or magnetic labels with 

AuNPs enhances detection limits, enabling the 

identification of trace biomarkers in saliva (90, 91).  (92). 

Despite these advantages, challenges remain, such as 

optimizing saliva sample collection to avoid variability 

and ensuring long-term stability of AuNP conjugates 

(93). Future research aims to develop smartphone-

compatible LFAs for quantitative analysis, leveraging 

machine learning for enhanced diagnostic accuracy (94). 

As AuNP-based salivary diagnostics continue to evolve, 

they hold immense potential for revolutionizing early 

disease detection, personalized medicine, and global 

health monitoring. 

Gold nanoparticle (AuNP)-based salivary diagnostics 

offer several key advantages that make them highly 

valuable for clinical applications. First, their non-

invasive sample collection method is patient-friendly, 
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particularly beneficial for pediatric and geriatric 

populations who may struggle with blood draws (95). 

Second, they provide rapid results, typically less than 20 

minutes, significantly faster than traditional lab-based 

assays that can take hours (89). Third, they are cost-

effective and portable, making them ideal for low-

resource and remote settings where advanced 

laboratory infrastructure is unavailable  (96). 

Additionally, AuNPs enhance sensitivity and specificity 

due to their unique plasmonic properties, enabling the 

detection of low-concentration biomarkers in saliva (96). 

Finally, these assays have the potential for multiplex 

detection, allowing simultaneous screening of multiple 

diseases from a single sample, which improves 

diagnostic efficiency (97). Together, these advantages 

position AuNP-based salivary diagnostics as a 

transformative tool in point-of-care testing and 

personalized medicine. 

Drug Delivery & Antimicrobial Therapy 

Gold nanoparticles (AuNPs) are revolutionizing 

dentistry (98). Their unique properties and 

biocompatibility make them ideal for targeted therapies 

(99). AuNPs improve drug delivery in periodontal 

infections. For example, doxycycline-loaded AuNPs 

enable precise antibiotic release (100). They also 

enhance antifungal treatments. Nystatin-conjugated 

AuNPs effectively combat oral candidiasis (101). In oral 

cancer, AuNPs enable photothermal therapy (PTT). They 

absorb near-infrared light, generating localized heat. 

This heat selectively kills cancer cells while sparing 

healthy tissue (102). 

AuNPs enhance drug stability and tissue penetration. 

They also allow controlled release, reducing side effects 

(103). Their potential in dental therapeutics is 

transformative. Current research focuses on optimizing 

biocompatibility. Clinical translation for broader 

applications is underway (104). AuNPs promise safer, 

more effective dental treatments. 

Gold nanoparticles (AuNPs) demonstrate exceptional 

potential in treating oral infections, particularly 

periodontal diseases caused by pathogens 

like Porphyromonas gingivalis and Aggregatibacter 

actinomycetemcomitans, where conventional antibiotics 

often fail due to poor biofilm penetration and systemic 

side effects (105, 106). Doxycycline-loaded AuNPs (10–

100 nm) enhance drug stability, enable sustained release 

in periodontal pockets, and penetrate subgingival 

biofilms (107). Surface modifications (e.g., chitosan 

coatings) improve mucoadhesion for prolonged 

localized action, reducing toxicity and enhancing biofilm 

disruption (108, 109). For oral candidiasis, nystatin-

loaded AuNPs boost antifungal efficacy by improving 

solubility and cellular uptake. Targeted delivery via 

Candida-specific ligands and dual mechanisms—

membrane disruption and ROS generation—provides 

superior activity over conventional treatments  (110). 

Gold nanoparticles (AuNPs) enable highly effective 

photothermal therapy (PTT) for oral cancer by 

leveraging their strong surface plasmon resonance (SPR) 

to absorb near-infrared (NIR) light (700–1100 nm) and 

convert it into localized heat, which selectively destroys 

cancer cells while sparing healthy tissue—this selectivity 

arises from the enhanced permeability and retention 

(EPR) effect, allowing preferential accumulation of 

AuNPs in tumors, where NIR irradiation (e.g., 808 nm 

laser) induces hyperthermia for precise ablation (111). 

Furthermore, AuNPs can be co-loaded with 

chemotherapeutic agents (e.g., cisplatin) to synergize 

PTT with chemotherapy, enhancing tumor suppression 

while overcoming drug resistance through heat-

mediated sensitization (112). Compared to conventional 

therapies, PTT with AuNPs offers a minimally invasive 

approach with superior precision, especially when 

functionalized with targeting ligands (e.g., anti-EGFR 

antibodies), reducing off-target effects and improving 

treatment outcomes for oral cancer (113). 

Looking ahead, gold nanoparticles (AuNPs) hold 

immense potential for multifunctional applications in 

dentistry, combining antimicrobial, anti-inflammatory, 

and regenerative properties, especially for 

comprehensive periodontal therapy, though challenges 

remain in clinical translation, requiring standardized 

toxicity studies and regulatory approvals to ensure 

safety and efficacy (114-117). The development of smart, 

stimuli-responsive AuNPs (e.g., pH- or enzyme-triggered 

drug release) could further enhance precision in treating 

infections and oral cancers (118, 119). As a versatile 

platform, AuNPs revolutionize dental therapeutics by 

enabling targeted drug delivery for periodontal and 

fungal infections while offering precision cancer 

treatment through photothermal therapy, with their 

ability to boost drug efficacy, minimize side effects, and 

integrate with advanced therapies marking a paradigm 
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shift in dental care—future research must now focus on 

optimizing biocompatibility and clinical applicability to 

unlock their full potential for widespread use (120, 121). 

Dental Implant & Bone Regeneration Monitoring 

Gold nanoparticles (AuNPs) are transforming dental 

implantology through their unique optical and bioactive 

properties (122). In peri-implantitis detection, AuNP-

coated implants sense bacterial biofilms, enabling early 

intervention. In addition, they were demonstrated to be 

effective in inactivating the bacteria attached to the 

implant surface (123).AuNP-enhanced scaffolds promote 

osteoblast growth for bone regeneration, which can be 

widely applicable for use in bone tissue 

regenerative therapy, both in orthopedic and dental 

settings (124). These smart systems offer early infection 

alerts, controlled drug release, and improved bone 

integration, outperforming conventional approaches 

(123, 125, 126). Future challenges include optimizing 

long-term stability and clinical scalability, but AuNPs 

promise to make dental implants more durable and 

responsive. 

Titanium (Ti) dental implants, while biocompatible, 

often face challenges like bacterial infection and peri-

implantitis due to their lack of inherent antibacterial 

activity (127). To address this, researchers have explored 

surface modifications using antimicrobial agents, 

including reactive oxygen species (ROS)-based therapies 

like photodynamic therapy (PDT) and sonodynamic 

therapy (SDT) (128, 129). Among these, SDT stands out 

due to ultrasound’s deep tissue penetration and 

precision (130).  (131). Unlike silver nanoparticles, 

AuNPs offer superior biocompatibility and stability, 

making them ideal for long-term antibacterial 

applications. Recent studies demonstrate that AuNP-

decorated TiO₂ nanotubes (AuNPs-TNTs) significantly 

improve antibacterial performance against pathogens 

like P. gingivalis, a key contributor to peri-implant 

infections (123). By combining AuNPs’ plasmonic effects 

with ultrasound’s deep-penetrating capability, this 

nanoplatform provides a safe, efficient, and minimally 

invasive solution for preventing biofilm-related implant 

failures, offering a novel approach to combat peri-

implantitis and enhance dental implant success (123).  

Gold nanoparticles (AuNPs) significantly enhance 

bone regeneration scaffolds by improving both 

structural and functional properties (132): AuNPs can 

promote the osteogenic differentiation of periodontal 

ligament stem cell sheets by upregulating bone-related 

protein expression and mineralization  (133). Besides 

being used as a carrier for stable delivery of biologically 

active molecules, GNPs are an intriguing substance for 

use in bone tissue engineering, given their inherent 

enhancement of bone regeneration (134). Additionally, 

AuNPs facilitate real-time monitoring of bone formation 

- colorimetric detection of alkaline phosphatase (ALP) 

via visible gold nanoparticle aggregation  (135). These 

multifunctional capabilities provide three major 

advantages over conventional scaffolds: 1- continuous 

feedback on healing progress, 2- on-demand drug 

delivery to prevent complications, and 3- enhanced 

mechanical strength without sacrificing 

biocompatibility, ultimately leading to more predictable 

and successful bone regeneration around dental 

implants (136-138). 

Gold nanoparticles (AuNPs) could transform next-

generation dental implants. These smart systems 

combine infection detection, drug release, and bone 

regeneration monitoring (32, 125, 139). AI-powered 

diagnostics could analyze AuNP sensor data for 

predictive care (140). However, challenges remain. AuNP 

coatings must stay stable in the harsh oral environment 

in the long term. Standardized biosensing protocols are 

needed for clinical adoption. Cost-effective 

manufacturing must also be achieved for widespread 

use. Overcoming these hurdles will require focused 

research. Scalable fabrication methods and rigorous 

clinical validation are key. Success could revolutionize 

oral healthcare. Implants would shift from passive 

structures to intelligent therapeutic systems. These 

advanced implants would enable early disease detection 

and personalized treatment. They could also monitor 

healing in real time. This would improve implant 

longevity and patient outcomes while reducing 

complications. 

Advantages of AuNP-Based Biosensors in Dentistry 

Gold nanoparticle (AuNP)-based biosensors are 

transforming dental diagnostics through their 

unparalleled sensitivity (detecting biomarkers at 

picomolar concentrations), enabled by precise 

functionalization with antibodies or aptamers for 

targeted pathogen identification (e.g., P. gingivalis, C. 

albicans), while offering rapid, non-invasive chairside 
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testing via saliva or GCF analysis with 

colorimetric/electrochemical results in minutes (141-

143). Their multiplex capability allows simultaneous 

detection of diverse biomarkers (bacteria, cytokines, 

pH), providing comprehensive oral health assessments, 

all within a biocompatible platform that outperforms 

other nanomaterials in safety and integrates seamlessly 

with digital dentistry tools like smartphone readers and 

AI analytics for real-time treatment monitoring (144, 

145). These advancements enable early disease 

intervention before radiographic changes occur, 

facilitate personalized treatment plans, and reduce 

healthcare costs by minimizing complex lab tests. 

Future Perspectives: The Next Frontier of AuNPs in 

Dentistry 

Gold nanoparticles (AuNPs) are set to revolutionize 

dentistry by merging nanotechnology with digital health 

solutions, enabling three transformative advancements: 

1- AI-integrated AuNP sensors for real-time disease 

monitoring through wearable oral devices (e.g., smart 

mouthguards) that track salivary biomarkers, with 

machine learning predicting disease progression and 

enabling telehealth integration (146); 2- smart dental 

implants with embedded AuNP sensors smart implants 

and wearable sensors, enable real-time monitoring of 

implant stability, healing progress, and patient-specific 

factors, allowing for timely interventions if needed  

(147); and 3- personalized point-of-care (POC) devices, 

including disposable AuNP strips for rapid pathogen 

detection and smartphone-connected biosensors for at-

home testing, allowing tailored treatments based on 

real-time microbial profiles (148, 149). Together, these 

innovations promise to shift dentistry toward proactive, 

data-driven, and precision-based care. Table 2 

summarizes the clinical advantages and current 

challenges of AuNP-based technologies in dentistry, 

highlighting their transformative potential alongside key 

hurdles for widespread adoption (table.2). 

Table 2. Clinical Advantages and Challenges of AuNP-Based Technologies in Dentistry 

Aspect Advantages Challenges 

Diagnostics Non-invasive (saliva/GCF samples), rapid results (<20 minutes), high sensitivity 
(picomolar detection). 

Variability in saliva collection; long-term stability of AuNP 
conjugates. 

Therapeutics Targeted drug delivery (e.g., doxycycline for periodontitis), reduced side effects. Optimizing drug-loading efficiency; scaling up production 
for clinical use. 

Preventive 
Care 

Antibacterial coatings for implants: biofilm disruption via photothermal therapy. Cost-effective fabrication; regulatory approval for 
nanomaterials. 

Bone 
Regeneration 

AuNP-enhanced scaffolds promote osteoblast growth and real-time healing 
monitoring. 

Ensuring long-term stability of AuNP coatings in harsh oral 
environments. 

Future 
Integration 

AI-powered predictive analytics; smart implants with real-time monitoring. Standardizing protocols; addressing ethical and saftey 

 

This table outlines the multifaceted roles of AuNPs in 

diagnostics, therapeutics, preventive care, bone 

regeneration, and future smart technologies. While 

AuNPs offer significant benefits such as non-invasive 

diagnostics, targeted treatments, and enhanced tissue 

regeneration, challenges remain in areas like material 

stability, regulatory hurdles, and ethical integration of 

emerging technologies. 

Conclusion 

Gold nanoparticles (AuNPs) are revolutionizing 

modern dentistry by enabling breakthroughs in oral 

diagnostics, therapeutics, and preventive care through 

their unique ability to facilitate ultra-sensitive, rapid, and 

non-invasive disease detection while serving as versatile 

platforms for targeted drug delivery and smart dental 

materials. By integrating AuNPs into advanced 

biosensors, antimicrobial therapies, and responsive 

implant coatings, dental professionals can now achieve 

unprecedented precision in diagnosing conditions like 

peri-implantitis and oral cancer at early stages, 

delivering site-specific treatments with minimal side 

effects, and monitoring treatment efficacy in real-time - 

ultimately transforming conventional dental practice 

into a more predictive, preventive, and personalized 

approach to oral healthcare. 
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