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AB ST R ACT  

Graphene, a single layer of sp²-hybridized carbon atoms, is gaining prominence in dental implantology due to its exceptional strength, 

conductivity, biocompatibility, and surface functionalization capabilities. Graphene-based nanocoatings enhance implant performance by 

improving mechanical durability, corrosion resistance, and antibacterial activity while promoting osseointegration through osteoblast 

stimulation. Derivatives like graphene oxide (GO) and reduced graphene oxide (rGO) enable further customization for drug delivery and 

biofunctionalization. Various deposition techniques—such as chemical vapor deposition, electrophoretic deposition, and dip coating—enable 

uniform and functional coatings. In vitro and in vivo studies demonstrate reduced pathogen colonization and improved bone integration. 

Despite promising outcomes, challenges remain in standardizing coating methods, ensuring long-term safety, and achieving scalable production. 

Continued interdisciplinary research is essential to transition these innovations into clinical practice. This review summarizes recent 

developments in graphene-based nanocoatings for dental implants, focusing on material properties, biological interactions, and clinical 

potential, while identifying key areas for future research and clinical translation. 
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Introduction 

Dental implants have revolutionized restorative 

dentistry by offering a long-term solution for tooth loss, 

improving both function and aesthetics (1). Despite their 

high success rates, complications such as poor 

osseointegration, peri-implantitis, and mechanical 

degradation continue to pose significant clinical 

challenges (2). These complications often arise from 

inadequate interaction between the implant surface and 

the surrounding biological environment (3). As a result, 

extensive research has focused on surface modification 

techniques aimed at enhancing the biological and 

mechanical integration of dental implants (4). 

One particularly promising approach involves the 

application of nanostructured coatings to dental implant 

surfaces (5). At the nanoscale, surface modifications can 

more closely mimic (6, 7) the natural extracellular 

matrix, thereby promoting cellular responses such as 

adhesion, proliferation, and differentiation (8). 

Nanocoatings can also be engineered to impart 

antimicrobial properties (9) and enhance mechanical 

performance (10). Among the various nanomaterials 

investigated, graphene and its derivatives—graphene 

oxide (GO) and reduced graphene oxide (rGO)—stand 

out due to their unique combination of exceptional 

physical, chemical, and biological properties (11). 

Graphene is a single layer of carbon atoms arranged in 

a hexagonal lattice, boasting remarkable tensile strength, 

electrical conductivity, and biocompatibility (12, 13). Its 

derivatives introduce functional groups that enable 

further chemical modification, making them suitable for 

diverse biomedical applications (14), including drug 

delivery, tissue engineering, and biosensing (15). In the 

context of dental implants, graphene-based 

nanocoatings have the potential to simultaneously 

address multiple challenges by enhancing 

osseointegration, providing antibacterial protection, and 

improving mechanical stability (16). 

http://creativecommons.org/licenses/by-nc/4.0
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Recent studies have demonstrated that graphene-

coated implants can support osteogenic differentiation 

of stem cells, reduce bacterial colonization, and exhibit 

excellent compatibility with human tissues (17). 

However, despite encouraging preclinical results, the 

translation of this technology into routine clinical use 

remains limited (18). This review explores the current 

state of graphene-based nanocoatings in dental 

implantology, emphasizing synthesis techniques, 

biological interactions, and future directions for clinical 

translation (19). 

Graphene and Its Derivatives: Properties and Relevance 

 Graphene consists of a single layer of carbon atoms 

arranged in a hexagonal lattice, which endows it with 

exceptional strength—approximately 200 times 

stronger than steel at an equivalent thickness (20). This 

outstanding mechanical property is highly beneficial in 

dental implants, where durability and resistance to 

mechanical fatigue are crucial for long-term success (21). 

In addition to its strength, graphene exhibits excellent 

electrical and thermal conductivity, high surface area, 

and flexibility, making it an ideal substrate for 

functionalization and integration with biomolecules (22) 

(Figure 1). 

 
Figure.1: Graphene in Dental Implants: Structure and Functionality 

 

This figure highlights the structure and properties of 

graphene and its application in dental implants. The left 

side illustrates graphene’s atomic arrangement in a 

single-layer hexagonal lattice, contributing to its 

exceptional strength, electrical and thermal conductivity, 

and high surface area. The right side shows a dental 

implant enhanced with a graphene coating, improving 

durability and serving as a functional platform for 

biomolecular interactions. 

Graphene oxide (GO) and reduced graphene oxide 

(rGO), two major derivatives of graphene, are 

particularly attractive for biomedical applications due to 

their unique surface chemistries (23). GO contains 

abundant oxygen-containing functional groups such as 

hydroxyl, carboxyl, and epoxy groups, which improve its 

hydrophilicity and enable easy dispersion in aqueous 

media (24). These functional groups also allow for the 

conjugation of various bioactive agents, enhancing the 

biological performance of the coating (25). rGO, obtained 
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through the reduction of GO, partially restores the 

conductivity of pristine graphene while retaining some 

functional groups, thereby balancing functionality with 

performance (26). 

The antibacterial activity of graphene and its 

derivatives arises from mechanisms such as membrane 

disruption, oxidative stress induction, and physical 

entrapment of bacteria (27). This property is especially 

advantageous in preventing peri-implant infections (28). 

Furthermore, graphene promotes the adhesion, 

proliferation, and osteogenic differentiation of 

mesenchymal stem cells, which are vital processes for 

successful osseointegration (29). Its biocompatibility, 

coupled with tunable surface properties, renders 

graphene-based materials versatile candidates for 

multifunctional implant coatings (30). 

Overall, the intrinsic properties of graphene and its 

derivatives support their application as nanocoatings 

that can address multiple challenges associated with 

dental implants, including mechanical failure, microbial 

contamination, and insufficient bone integration (31). 

Methods of Applying Graphene Nanocoatings  

Several techniques have been developed for 

depositing graphene-based nanocoatings on implant 

surfaces, each with unique advantages and limitations 

(32). 

Chemical Vapor Deposition (CVD) is widely 

regarded for producing high-quality, defect-free 

graphene films (33). It involves the decomposition of 

carbon-containing gases at high temperatures onto 

metal catalysts (34, 35). While CVD provides uniform and 

continuous graphene layers, its application to titanium 

implants is constrained due to the high processing 

temperatures, which may compromise implant integrity 

(36). 

Electrophoretic Deposition (EPD) utilizes an 

electric field to deposit charged graphene particles from 

a colloidal suspension onto conductive implant surfaces 

(37). This technique is advantageous for coating complex 

geometries and achieving uniform thickness (38). EPD is 

also scalable and compatible with room temperature 

processing, making it suitable for practical biomedical 

applications (39). 

Dip Coating and Spin Coating are simple and cost-

effective methods for applying graphene oxide (GO) and 

reduced graphene oxide (rGO) onto implants (40). Dip 

coating involves immersing the implant in a graphene-

containing solution and withdrawing it at a controlled 

rate (41). These techniques are suitable for mass 

production but may require multiple applications for 

consistent coverage (42). 

Layer-by-Layer (LbL) Assembly allows for precise 

control over coating thickness and composition by 

sequentially depositing alternating layers of positively 

and negatively charged materials (43). This method 

enables the creation of multifunctional coatings with 

tailored biological and mechanical properties (44). 

Overall, the choice of coating method depends on the 

desired properties, substrate compatibility, and 

scalability for clinical translation (45). 

Biological Interactions of Graphene-Coated Implants 

 Graphene-based nanocoatings have demonstrated 

promising biological outcomes that contribute to 

improved implant performance (46). One of the most 

significant advantages is their ability to enhance 

osseointegration (47). Graphene surfaces promote 

osteoblast adhesion, proliferation, and differentiation by 

providing nanoscale topography and chemical cues that 

mimic the natural extracellular matrix (48). Increased 

expression of osteogenic markers, such as alkaline 

phosphatase (ALP), osteocalcin, and bone sialoprotein, 

has been reported in cells cultured on graphene-coated 

surfaces (49). These findings suggest that graphene 

facilitates earlier and more robust bone formation 

around the implant (50). 

Moreover, graphene exhibits strong antibacterial 

activity, primarily through mechanisms such as physical 

disruption of bacterial membranes, induction of 

oxidative stress, and electron transfer interference (51). 

These effects reduce bacterial viability and inhibit 

biofilm formation (52), which is critical for preventing 

peri-implant infections (53). Graphene coatings have 

shown effectiveness against common oral pathogens like 

Staphylococcus aureus, Escherichia coli, and 

Porphyromonas gingivalis, thereby contributing to the 

long-term success of dental implants (54). 

Another important interaction is graphene’s 

modulation of the host immune response (55). Studies 

indicate that graphene can suppress the production of 

pro-inflammatory cytokines such as TNF-α and IL-6, 
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while supporting anti-inflammatory responses (56). This 

immune-modulating property may help reduce post-

surgical inflammation and the risk of peri-implantitis 

(57). 

Collectively, the biological interactions of graphene-

coated implants present a synergistic approach to 

tackling multiple challenges in implantology—ranging 

from infection prevention to bone regeneration—

making them a highly attractive option for clinical 

translation (58). 

Clinical Implications and Current Limitations  

The integration of graphene-based nanocoatings into 

dental implantology holds transformative potential; 

however, several challenges must be addressed before 

these innovations can become part of routine clinical 

practice (59). One of the major concerns is the lack of 

standardized fabrication and application protocols (60). 

Variability in synthesis methods, graphene sources, and 

coating techniques can lead to inconsistencies in coating 

quality, biological response, and overall implant 

performance (61). Establishing robust, reproducible 

manufacturing standards is therefore essential (62). 

Another limitation lies in the limited understanding of 

the long-term in vivo behavior and safety profile of 

graphene coatings (63, 64). While short-term studies 

suggest favorable outcomes in terms of biocompatibility 

and antibacterial activity, comprehensive toxicological 

evaluations and longitudinal animal studies are still 

lacking (65). The potential for chronic inflammation, 

particle degradation, and systemic distribution of 

graphene derivatives must be thoroughly assessed (66). 

Scalability and cost-effectiveness are additional 

hurdles (67). Producing high-quality graphene materials 

in large quantities with consistent properties remains a 

technical and economic challenge (68). Furthermore, 

integrating these materials into existing dental implant 

production pipelines without significantly increasing 

costs requires innovative engineering solutions (69). 

Regulatory approval processes also present barriers, 

as the incorporation of novel nanomaterials into medical 

devices necessitates rigorous validation and 

documentation (70). Addressing these limitations 

through interdisciplinary collaboration between 

researchers, clinicians, and regulatory bodies will be key 

to successfully translating graphene nanocoatings from 

bench to bedside (71). 

Future Perspectives  

The future of graphene-based nanocoatings in dental 

implantology is promising, driven by advances in 

materials science, surface engineering, and biomedical 

research (72). One of the most exciting directions is the 

development of smart or stimuli-responsive coatings 

(73). These intelligent surfaces could release therapeutic 

agents such as antibiotics, anti-inflammatory drugs, or 

growth factors in response to environmental cues like pH 

changes, bacterial presence, or mechanical stress (74). 

Such functionality could help prevent infections, reduce 

inflammation, and promote faster healing post-

implantation (75). 

Another compelling avenue involves the creation of 

hybrid nanocoatings that combine graphene with other 

bioactive materials. For example, incorporating 

hydroxyapatite can enhance bone affinity, while silver or 

zinc nanoparticles can further boost antimicrobial 

properties (76, 77). These composite coatings offer 

synergistic effects that enhance the overall bioactivity 

and durability of implants (78). 

Future research must also prioritize comprehensive 

in vivo studies and clinical trials to validate laboratory 

findings and ensure safety, efficacy, and reproducibility 

in human patients (79). Investigating long-term 

biological responses and optimizing the balance between 

biofunctionality and stability will be critical (80). 

Additionally, collaboration between academia, 

industry, and regulatory agencies will be vital in 

overcoming translational barriers (81). Standardized 

protocols, scalable manufacturing techniques, and clear 

regulatory guidelines will facilitate smoother integration 

into commercial dental practice (82). With continued 

innovation and interdisciplinary cooperation, graphene 

nanocoatings may soon redefine the standard of care in 

dental implantology (83, 91-93) (table.1). 

  



Journal of Oral and Dental Health Nexus 

 

5 

 

Table 1. Types of Graphene and Their Functional Roles in Dental Implant Applications 

Type of Graphene Description Primary Functions in Dental Implants Notable Applications or Advantages 

Pristine Graphene Pure single-layer carbon sheet with no 
functional groups. 

High mechanical strength, excellent 
conductivity, and surface modification 
potential. 

Used in enhancing implant durability 
and load-bearing capacity(84). 

Graphene Oxide (GO) Graphene with oxygen-containing 
groups (e.g., hydroxyl, carboxyl, 
epoxy). 

Enhanced dispersibility, surface 
functionalization, promotes osteoblast 
adhesion. 

Supports hydroxyapatite deposition 
and biofunctional coatings(85). 

Reduced Graphene Oxide (rGO) Chemically or thermally reduced GO, 
partially restores graphene's 
conductivity. 

Balanced conductivity and 
functionality, supports cell 
proliferation and antimicrobial effects. 

Suitable for coatings requiring both 
bioactivity and conductivity(86). 

Functionalized Graphene Graphene modified with biomolecules, 
drugs, or nanoparticle 

Targeted drug delivery, anti-
inflammatory or antibacterial activity, 
customized bioactivity. 

Enables smart, drug-releasing implant 
coatings(87). 

Graphene Nanocomposites Graphene combined with other 
materials (e.g., hydroxyapatite, silver). 

Synergistic effects: improved 
osseointegration, antimicrobial action, 
enhanced bioactivity. 

Combines mechanical and 
antimicrobial properties in one 
platform(88). 

Doped Graphene Graphene doped with atoms like 
nitrogen, boron, or fluorine. 

Enhanced electrical properties, 
improved antibacterial activity, and 
tailored surface energy. 

Allows tuning of implant surface 
reactivity and bio-integration(89). 

Graphene Quantum Dots (GQDs) Nanoscale fragments of graphene with 
unique optical and chemical 
properties. 

High biocompatibility, bioimaging, 
oxidative stress induction for 
antimicrobial effect. 

Useful in diagnostic implants and 
antimicrobial photodynamic 
therapy(90). 

 

Conclusion 

Graphene-based nanocoatings offer a transformative 

approach to enhancing dental implant performance by 

addressing key challenges such as insufficient 

osseointegration, microbial colonization, and 

mechanical degradation. Their exceptional mechanical 

strength, biocompatibility, and antimicrobial and 

osteoinductive properties position them as ideal 

materials for multifunctional implant surfaces. These 

coatings support cellular adhesion, proliferation, and 

differentiation while inhibiting peri-implant pathogens, 

thus promoting long-term implant success. 

Emerging deposition techniques—including chemical 

vapor deposition, electrophoretic deposition, and dip 

coating—enable the creation of uniform, durable, and 

bioactive coatings suitable for diverse clinical scenarios. 

Functionalized and composite graphene systems further 

expand the potential for smart, responsive implant 

surfaces capable of therapeutic delivery. 

Despite these advantages, clinical adoption remains 

limited due to challenges such as inconsistent coating 

methods, lack of long-term safety data, and regulatory 

hurdles. Addressing these issues requires standardized 

protocols, scalable manufacturing solutions, and 

collaborative efforts across scientific, clinical, and 

regulatory domains. 

In summary, graphene nanocoatings present a 

promising platform for next-generation dental implants, 

integrating biological and mechanical performance in a 

single solution. With continued research, validation, and 

interdisciplinary collaboration, these innovations have 

the potential to redefine restorative dentistry by offering 

safer, longer-lasting, and more effective implant 

therapies. 
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