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AB ST R ACT  

The convergence of artificial intelligence and nanotechnology has revolutionized the development of precision therapeutics for oral squamous 

cell carcinoma (OSCC), addressing critical challenges in drug delivery, tumor ablation, and early detection. This review systematically examines 

how AI-driven approaches—including machine learning (ML), generative adversarial networks (GANs), and reinforcement learning—optimize 

nanomaterial design for OSCC applications. ML algorithms predict critical nanocarrier properties (size, shape, surface charge) to enhance tumor 

targeting, while GANs explore novel nanostructures with stimuli-responsive drug release tailored to the acidic OSCC microenvironment. 

Reinforcement learning and genetic algorithms further refine surface functionalization and release kinetics, achieving unprecedented tumor-

to-normal tissue ratios (18:1) and sustained therapeutic delivery. Clinically, AI-designed nanotherapeutics demonstrate remarkable advances: 

(1) polymeric nanoparticles with optimized mucoadhesion for localized delivery, (2) photothermal agents with 85% energy conversion efficiency 

for tumor ablation, and (3) nanosensors detecting salivary biomarkers at 0.1 pg/mL for early diagnosis. Despite these breakthroughs, challenges 

persist in manufacturing scalability and regulatory adaptation of AI-generated designs. Future directions highlight closed-loop systems 

integrating real-time patient data and multi-objective optimization for personalized nanomedicine. By bridging computational innovation with 

biological validation, AI-enabled nanomaterial design promises to transform OSCC management, offering targeted, adaptive, and minimally 

invasive therapeutic strategies.   
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Introduction 

Nanomaterials, meticulously engineered at the 

nanoscale (1–100 nanometers), are transforming the 

landscape of drug delivery by overcoming longstanding 

limitations of conventional therapies (1, 2). Their unique 

physicochemical properties—such as high surface area-

to-volume ratios (3), tunable surface chemistry, and the 

ability to mimic biological structures—enable 

unprecedented precision in targeting diseased cells, 

enhancing therapeutic efficacy, and minimizing systemic 

toxicity (4, 5). For instance, lipid-based nanoparticles 

(e.g., liposomes) and polymeric nanocarriers (6) (e.g., 

dendrimers) can encapsulate drugs, protecting them 

from degradation while facilitating controlled release at 

specific sites (7). This targeted approach is particularly 

groundbreaking in oncology, where nanomaterials 

functionalized with ligands or antibodies can selectively 

bind to overexpressed receptors on cancer cells, 

delivering chemotherapeutic agents directly to tumors 

while sparing healthy tissue (8). Similarly, in 

neurological disorders, nanoscale carriers cross the 

blood-brain barrier—a feat unachievable by many 

conventional drugs—to deliver therapeutics for 

http://creativecommons.org/licenses/by-nc/4.0
http://creativecommons.org/licenses/by-nc/4.0
https://doi.org/10.61838/jodhn.2.2.2
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Alzheimer’s or Parkinson’s disease (9). Beyond targeting, 

nanomaterials also improve drug solubility and 

bioavailability, addressing challenges in delivering 

hydrophobic compounds or biologics like mRNA 

vaccines, as demonstrated by the lipid nanoparticles in 

COVID-19 vaccines (10). 

The integration of artificial intelligence (AI) into this 

field has accelerated innovation, turning what was once 

a trial-and-error process into a data-driven science. 

Machine learning algorithms analyze vast datasets—

from material properties and drug interactions to patient 

genomics and clinical outcomes—to predict optimal 

nanomaterial designs (11). For example, AI models can 

simulate how nanoparticle size, shape, and surface 

charge influence cellular uptake, biodistribution, and 

clearance, enabling researchers to rapidly prototype 

formulations with desired pharmacokinetic profiles (12). 

Generative adversarial networks (GANs) and 

reinforcement learning further refine these designs by 

iterating through millions of virtual permutations, 

identifying candidates that maximize drug-loading 

capacity or minimize immune system detection (13). AI 

also streamlines preclinical testing: predictive toxicology 

models assess nanomaterial biocompatibility, reducing 

reliance on costly and time-consuming animal studies 

(Fig. 1) (14).  

Moreover, AI enables personalized nanomedicine by 

tailoring therapies to individual patient profiles (15). By 

integrating multi-omics data (genomic, proteomic, 

metabolomic), AI identifies biomarkers that predict drug 

response (16)s, guiding the customization of 

nanocarriers for patient subgroups (17). In cancer 

therapy, this might involve designing nanoparticles that 

release drugs in response to tumor-specific enzymes or 

pH levels, ensuring treatment adapts to the dynamic 

tumor microenvironment (18). AI-powered diagnostics, 

such as nanoparticle-based biosensors, further enhance 

personalization by providing real-time monitoring of 

drug levels and disease progression, enabling dynamic 

dose adjustments (19). This synergy between 

nanomaterials and AI is particularly vital in addressing 

complex biological barriers, such as heterogeneous 

tumor vasculature or antibiotic-resistant biofilms, where 

adaptive, multifunctional solutions are required (20). 

Despite these advances, challenges remain, including 

scalability, regulatory hurdles, and long-term safety 

assessments. However, the convergence of 

nanomaterials and AI holds immense promise for 

democratizing advanced therapies, reducing 

development costs, and improving global health equity 

(21). As computational power grows and datasets 

expand, this partnership is poised to unlock next-

generation innovations—from programmable “smart” 

nanobots for intracellular drug delivery to AI-designed 

nano vaccines that preempt emerging pathogens (22). 

Ultimately, the fusion of nanotechnology and artificial 

intelligence represents a paradigm shift in medicine, 

ushering in an era of precision therapeutics that are as 

intelligent as they are transformative. 

 
Figure1. AI driven innovations in OSCC diagnosis and treatment 
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AI in Nanomaterial Design 

Predictive Modeling: 

Machine learning (ML) algorithms predict material 

properties (size, shape, charge) optimal for specific 

drugs. For example, neural networks simulate 

nanoparticle behavior to maximize tumor targeting 

while minimizing immune detection (23). The 

development of effective drug delivery systems hinges 

on the precise engineering of material properties such as 

size, shape, and surface charge (24). These parameters 

dictate how a drug interacts with biological systems, 

influencing circulation time, cellular uptake, immune 

evasion, and targeting accuracy (25). Traditional 

methods for optimizing these properties rely on iterative 

trial-and-error experimentation, which is time-

consuming, costly, and often limited in scope (26). 

Machine learning (ML) has emerged as a transformative 

tool, enabling researchers to predict optimal material 

designs with unprecedented speed and precision, 

thereby accelerating the development of targeted 

therapies (27).   

Material Properties and Biological Interactions   

1. Size: Nanoparticle size determines biodistribution 

and clearance. Smaller particles (<10 nm) may be rapidly 

filtered by the kidneys, while larger ones (>100 nm) risk 

uptake by the liver and spleen (28). ML models analyze 

historical data to identify size ranges that balance 

prolonged circulation with efficient tumor penetration 

(29). For instance, neural networks trained on datasets 

from preclinical studies can predict that 20–50 nm 

particles exhibit optimal tumor accumulation via the 

enhanced permeability and retention (EPR) effect (30).   

2. Shape: Particle morphology influences flow 

dynamics and cellular internalization. Spherical particles 

circulate longer, while rod-shaped or disc-like structures 

may enhance endothelial adhesion (31). ML algorithms, 

such as convolutional neural networks (CNNs), correlate 

shape data from imaging studies with in vivo 

performance to recommend geometries that maximize 

tissue-specific delivery (32).   

3. Surface Charge: Positively charged particles 

interact more readily with negatively charged cell 

membranes, improving uptake but risking immune 

recognition (33). Conversely, neutral or slightly negative 

surfaces evade immune cells but may reduce targeting. 

ML models optimize this trade-off by simulating how 

surface modifications (e.g., PEGylation) affect stealth and 

binding efficiency (34).   

Role of Machine Learning Algorithms 

Neural networks excel in modeling complex, non-

linear relationships between material properties and 

biological outcomes. For example, graph neural 

networks (GNNs) simulate nanoparticle behavior by 

integrating multi-modal data—such as molecular 

structure, protein corona formation, and hemodynamic 

parameters—to predict tumor-targeting efficacy (35). 

These models are trained on datasets combining 

experimental results (e.g., pharmacokinetic profiles) and 

computational simulations (e.g., molecular dynamics), 

enabling them to identify design rules invisible to human 

researchers. Reinforcement learning (RL) further 

iterates designs by rewarding strategies that minimize 

immune detection while maximizing drug release at 

tumor sites (36).   

ML has already demonstrated success in optimizing 

lipid nanoparticles (LNPs) for mRNA vaccines, where 

particle stability and endosomal escape are critical (37). 

By analyzing datasets from high-throughput screening, 

ML algorithms identified lipid compositions that 

enhance mRNA delivery efficiency, a breakthrough 

pivotal to COVID-19 vaccine development. In oncology, 

ML-driven design of pH-sensitive polymeric 

nanoparticles improved chemotherapy targeting, 

reducing off-target toxicity in murine models (38).   

Machine learning is redefining the paradigm of drug 

delivery design, offering a pathway to therapies that are 

both highly specific and minimally invasive. By bridging 

computational predictions with biological validation, ML 

accelerates the translation of nanoparticles from concept 

to clinic, heralding a new era of precision medicine. As 

algorithms and datasets evolve, the synergy between AI 

and nanotechnology will continue to unlock innovative 

solutions for global health challenges (39). 

Generative Design 

Generative adversarial networks (GANs) propose 

novel nanostructures beyond human intuition, exploring 

uncharted chemical spaces for drug carriers (40). 
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Generative adversarial networks (GANs) are 

revolutionizing the design of nanostructures for drug 

delivery by autonomously generating innovative 

configurations that transcend conventional human 

intuition (41). By leveraging a dual-network 

framework—where a generator creates candidate 

structures and a discriminator evaluates their 

feasibility—GANs explore vast, uncharted chemical and 

structural spaces to propose nanomaterials with 

optimized properties such as enhanced biocompatibility, 

stimuli-responsive drug release, or targeted cellular 

uptake (42). This approach accelerates the discovery of 

non-obvious, high-performance drug carriers, including 

lipid nanoparticles, polymeric micelles, or metal-organic 

frameworks, which might otherwise remain 

undiscovered through traditional trial-and-error 

methods. By simulating and validating designs *in silico* 

before synthesis, GANs reduce experimental costs and 

enable rapid iteration toward carriers capable of 

navigating biological barriers, improving therapeutic 

efficacy, or enabling personalized medicine. The 

technology’s ability to balance multiple design 

constraints, such as stability, payload capacity, and 

biodegradability, positions it as a transformative tool for 

overcoming longstanding challenges in nanomedicine 

and drug delivery innovation (43). 

 
Figure2. comparison of predictive and generative modeling 

Optimization of Nanosystems 

Reinforcement learning iteratively adjusts 

parameters (e.g., surface functionalization) to enhance 

stability or cellular uptake (44). Genetic algorithms 

optimize release kinetics by evolving designs through 

simulated generations. The development of advanced 

drug delivery systems (DDS) increasingly relies on 

computational tools like reinforcement learning (RL) 

and genetic algorithms (GA) to optimize critical 

parameters such as nanoparticle surface 

functionalization, stability, cellular uptake, and drug 

release kinetics. These methods accelerate design cycles, 

reduce costs, and enhance therapeutic efficacy by 

iteratively refining solutions in silico before 

experimental validation(Fig. 3) (45). 
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Figure3. Optimization of Nanosystems 

Reinforcement Learning for Surface Functionalization and 
Cellular Uptake   

Reinforcement learning operates through an agent 

that interacts with an environment—here, a simulated or 

experimental biological system—to maximize 

cumulative rewards (46). In optimizing 

functionalization, the agent might adjust parameters like 

ligand density, polymer coatings, or charge distribution. 

For instance, a nanoparticle coated with polyethylene 

glycol (PEG) to evade immune detection could have its 

PEG density tuned by the RL agent. Each iteration 

involves:   

1. Action: Modifying surface properties (e.g., adding 

targeting ligands like folate) (47).   

2. Feedback: Measuring outcomes (e.g., cellular 

uptake via in vitro assays or simulations) (48).   

3. Reward: Assigning a score based on stability (e.g., 

resistance to protein corona formation) or uptake 

efficiency (49).   

The agent learns a policy to prioritize 

functionalization that balance stealth (prolonged 

circulation) and targeting (e.g., cancer cell 

internalization). RL excels in sequential decision-

making, adapting dynamically to complex biological 

interactions. Challenges include defining accurate 

reward functions and integrating real-world variability 

(e.g., heterogeneous cell membranes) into simulations 

(50). 

Genetic Algorithms for Release Kinetics Optimization 

Genetic algorithms mimic natural evolution to 

optimize designs over simulated generations. For drug 

release kinetics, GA starts with a population of designs 

(e.g., varying polymer compositions in micelles or 

hydrogels). Each design is evaluated using a fitness 

function tied to desired release profiles (e.g., sustained 

release over weeks). Key steps include:   

1. Selection: High-performing designs (e.g., linear 

release kinetics) are retained (51).   
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2. Crossover/Mutation: Hybridizing parameters (e.g., 

blending polymer ratios) or introducing random changes 

(e.g., altering porosity) (52).   

3. Iteration: Repeating over generations to converge 

on optimal solutions (53).   

GA explores vast design spaces efficiently, avoiding 

local optima. For example, optimizing a multi-layered 

stent coating might involve evolving materials that 

degrade at specific rates. Challenges include defining 

representative fitness functions and managing 

computational costs for high-dimensional parameters 

(54). 

 Synergy and Applications   

Hybrid approaches combine RL and GA: RL could 

optimize surface chemistry in real-time, while GA refines 

bulk material properties. For instance, a nanoparticle’s 

surface might be tuned by RL for uptake, while GA 

evolves its core for controlled drug release. Experimental 

validation closes the loop, with computational 

predictions guiding lab synthesis (55).   

GA-optimized hydrogel: A genetically algorithm (GA)-

designed hydrogel engineered for sustained insulin 

delivery has demonstrated promising efficacy in 

maintaining therapeutic insulin levels over 48 hours in 

vivo, offering a potential breakthrough for diabetes 

management (56). By leveraging computational 

optimization, the GA tailored the hydrogel’s polymer 

network, crosslinking density, and responsive 

degradation profile to enable controlled insulin release 

kinetics, effectively mimicking physiological needs while 

minimizing rapid clearance or burst release (57). The 

hydrogel’s glucose-responsive components, potentially 

integrated through GA-driven material selection, may 

dynamically adjust insulin diffusion in response to 

fluctuating blood sugar levels, enhancing therapeutic 

precision (58). In vivo studies confirmed robust 

biocompatibility and sustained bioactivity of insulin, 

critical for avoiding hypoglycemic risks and reducing 

injection frequency. This innovation highlights the 

power of computational design in creating smart 

biomaterials that improve patient compliance and 

glycemic control, paving the way for next-generation, 

long-acting drug delivery systems for chronic diseases 

(59). 

Application and Usage of AI-Designed Nanomaterials in the 
Treatment of Oral Cancer 

The integration of artificial intelligence (AI) into 

nanomaterial design has significantly advanced the 

diagnosis and treatment of oral cancer (60). AI facilitates 

the development of highly specialized nanoparticles with 

enhanced functionality, including precision drug 

delivery, improved imaging, and targeted therapeutic 

modalities (61, 62). This synergy between AI and 

nanotechnology offers promising avenues for more 

effective and personalized oncological interventions. 

Below are three major applications of AI-designed 

nanomaterials in the management of oral cancer(Fig. 4): 
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Figure4. AI-Designed Nanomaterials in the Treatment of Cancer 

AI-Guided Targeted Drug Delivery Systems 

AI has revolutionized the development of 

nanocarriers by enabling precise control over 

physicochemical properties, thereby enhancing the 

therapeutic index of anticancer drugs while minimizing 

systemic toxicity (63). 

Mechanisms of Action: 

• AI-Driven Predictive Modeling: Machine 

learning (ML) algorithms analyze complex 

datasets, including drug pharmacokinetics, 

tumor microenvironment characteristics, and 

cellular interactions, to design nanoparticles 

(NPs) with optimal size, charge, and drug-

loading efficiency (64). 

• Stimuli-Responsive Release: AI aids in 

engineering smart nanoparticles that respond to 

tumor-specific stimuli (e.g., acidic pH, 

overexpressed enzymes), ensuring site-specific 

drug release (65). 

Representative Examples: 

• Polymeric Nanoparticles (e.g., PLGA, 

Chitosan): AI optimizes polymer-drug 

compatibility to achieve sustained and 

controlled drug release (66). 

• Liposomes: AI refines lipid composition and 

surface functionalization (e.g., folate or EGFR-

targeting ligands) for enhanced tumor 

specificity (67). 

• Gold Nanoparticles (AuNPs): AI determines 

the most effective nanoparticle morphologies 

(spheres, rods) for increased cellular uptake and 

drug delivery efficiency (68). 

Clinical Advantages: 

• Enhanced tumor selectivity and reduced off-

target toxicity 

• Improved drug solubility, stability, and 

bioavailability 

• Reduced systemic adverse effects associated 

with conventional chemotherapy (69) 

Photothermal Therapy (PTT) with AI-Engineered 
Nanomaterials 

Photothermal therapy utilizes the ability of 

nanoparticles to convert near-infrared (NIR) light into 

localized heat, inducing tumor cell death. AI enhances 



Journal of Oral and Dental Health Nexus 

 

13 

 

this technique by optimizing the physicochemical 

parameters of the nanomaterials involved (70). 

Mechanisms of Action: 

• Optimized Nanomaterial Selection: AI 

identifies nanomaterials with superior 

photothermal conversion efficiency, such as 

gold nanorods or graphene oxide, and predicts 

their optimal geometry for maximum light 

absorption (71). 

• Thermal Mapping and Modeling: AI 

simulations model heat distribution within 

tissues to achieve selective ablation of 

malignant cells while sparing surrounding 

healthy tissues (72). 

Representative Examples: 

• Gold Nanorods: AI fine-tunes aspect ratios to 

maximize NIR absorption and subsequent heat 

generation (73). 

• Carbon Nanotubes and Graphene 

Derivatives: AI improves surface modifications 

to enhance tumor targeting and minimize 

immunogenicity (74). 

Clinical Advantages: 

• Non-invasive and repeatable treatment 

modality 

• Targeted thermal ablation with minimal damage 

to adjacent tissues 

• Potential for synergistic integration with 

chemotherapy or immunotherapy (75) 

AI-Enhanced Nanosensors for Early Detection of Oral 
Cancer 

Early diagnosis of oral cancer significantly improves 

prognosis. AI-powered nanosensors (76) enhance the 

sensitivity and specificity of cancer biomarker detection, 

allowing for timely intervention. 

Mechanisms of Action: 

• Advanced Biomarker Detection: AI processes 

complex data from nanosensors to identify 

minute concentrations of cancer-related 

biomarkers (e.g., mutated DNA, proteins) in 

non-invasive samples such as saliva or blood 

(77). 

• Enhanced Sensor Design: AI optimizes 

nanoparticle coatings—such as antibodies, 

aptamers, or peptides—for high-affinity 

biomarker binding, improving signal 

transduction (78). 

Representative Examples: 

• Quantum Dot-Based Sensors: AI amplifies 

fluorescence signals for high-resolution, real-

time imaging of malignant lesions and tumor 

margins (79). 

• Surface-Enhanced Raman Spectroscopy 

(SERS) Nanoparticles: AI algorithms decipher 

spectral patterns to differentiate malignant 

from benign cells at molecular levels (80). 

Clinical Advantages: 

• Early and precise diagnosis, even before clinical 

symptoms emerge 

• Non-invasive, patient-friendly diagnostic 

procedures 

• Real-time monitoring of treatment efficacy and 

disease progression (81) 

Finally, AI-designed nanomaterials are ushering in a 

new era in oral cancer management through: 

1. Precision Drug Delivery: Targeted delivery 

systems that enhance treatment efficacy while 

minimizing adverse effects (82) 

2. Photothermal Therapy: Non-invasive tumor 

ablation via localized heat generation (83) 

3. Early Detection Nanosensors: Sensitive 

diagnostic tools for early-stage cancer 

identification and treatment monitoring (84) 

The convergence of AI and nanotechnology holds 

transformative potential for improving patient 

outcomes, enabling personalized treatment strategies, 

and significantly advancing oral oncology (85). 

Challenges and Future Directions   

The integration of reinforcement learning (RL) and 

genetic algorithms (GA) into drug delivery system (DDS) 

development highlights the synergy of computational 

and experimental approaches, where RL’s reliance on 

high-quality training data ensures adaptive learning of 

complex biological interactions, while GA’s dependency 

on precise parameter encoding enables robust 

exploration of vast design spaces (86). Future 

advancements could leverage multi-objective 

optimization (MOO) frameworks to balance competing 

priorities, such as minimizing toxicity while maximizing 

therapeutic efficacy, thereby addressing the inherent 

trade-offs in drug design (87). Coupling these 

approaches with AI-driven lab automation—such as 
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robotic high-throughput screening, autonomous 

synthesis, and real-time data analytics—could accelerate 

iterative design-test cycles, dynamically refining 

hypotheses and reducing manual intervention. By 

bridging computational intelligence with experimental 

validation, these technologies enable closed-loop 

optimization, where in silico predictions guide wet-lab 

experiments, which in turn generate feedback to 

enhance model accuracy (88). This convergence fosters 

the development of precision therapeutics tailored to 

individual patient profiles, optimizing variables like drug 

carrier composition, release kinetics, and target 

specificity. Ultimately, the fusion of RL, GA, MOO, and 

automated experimentation promises to revolutionize 

DDS development, reducing costs and timelines while 

enhancing safety and efficacy, particularly in complex 

diseases like cancer or neurodegenerative disorders, 

where personalized solutions are critical (89). Cross-

disciplinary collaboration will further amplify these 

gains, embedding computational rigor into every stage of 

translational research (90). 

Stimuli-Responsive Drug Release 

AI models trained on datasets of pH-, temperature-, or 

enzyme-sensitive materials predict optimal triggers for 

targeted release (91). For instance, random forest 

classifiers identify polymer combinations that degrade 

selectively in acidic tumor microenvironments (92). 

Targeted drug delivery systems (TDDS) aim to 

maximize therapeutic efficacy while minimizing off-

target effects, a critical challenge in treatments like 

chemotherapy (93). Tumors, for instance, exhibit unique 

microenvironmental features such as mild acidity (pH 

~6.5–6.9), elevated temperatures, and overexpressed 

enzymes (e.g., matrix metalloproteinases). Exploiting 

these triggers requires designing materials—often 

polymers or nanoparticles—that degrade or release 

drugs selectively under specific conditions (94). 

However, identifying optimal material combinations 

through traditional trial-and-error experimentation is 

slow and resource-intensive. Artificial intelligence (AI), 

particularly machine learning (ML) models like random 

forest classifiers, accelerates this process by predicting 

high-performing candidates from vast datasets, 

revolutionizing smart material design (29). 

 

Role of Random Forest Classifiers in Material 

Selection 

Random forest algorithms excel in handling 

multidimensional datasets with complex interactions, 

making them ideal for analyzing material properties 

(e.g., polymer composition, molecular weight, 

crosslinking density) and their degradation behavior 

under varying pH, temperature, or enzymatic activity 

(95). For example, a dataset might include:   

Input variables: Polymer hydrophobicity, functional 

groups (e.g., ester, carboxy groups), glass transition 

temperature, and nanoparticle size.   

Output labels: Degradation rates or drug release 

profiles at specific pH/temperature/enzyme levels.   

The model identifies patterns, such as carboxy-rich 

polymers hydrolyzing faster in acidic environments, or 

thermosensitive liposomes releasing payloads at 40–

42°C (common in inflamed tissues) (96). For tumors, 

random forests can prioritize materials stable at 

physiological pH (7.4) but degradable in acidic 

microenvironments. A 2022 study demonstrated this by 

training a classifier on 5,000+ polymer datasets, 

successfully predicting poly(beta-amino ester) 

derivatives that degrade at pH 6.5 with 92% accuracy, 

validated in vitro (97). 

Conclusion 

The integration of artificial intelligence with 

nanomaterial design has created a paradigm shift in oral 

cancer therapeutics. Through predictive modeling, 

generative design, and iterative optimization, AI-enabled 

approaches have yielded nanocarriers with 

unprecedented precision in drug delivery, photothermal 

ablation, and diagnostic sensing. While challenges in 

translation persist, the continued evolution of 

computational algorithms and experimental validation 

pipelines promises to accelerate the development of 

personalized nanomedicines for OSCC. Future research 

must focus on bridging the gap between in 

silico innovation and clinical implementation to fully 

realize the potential of this transformative technology. 
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